Codeforces 617D Polyline【思维+分类讨论】

三点连线最少段数
探讨如何使用最少数量的平行坐标轴线段连接平面上的三个不同点,形成一个不自交、不自触的简单折线。通过分析点的位置关系,提供了一种高效的算法解决方案。

D. Polyline
time limit per test
1 second
memory limit per test
256 megabytes
input
standard input
output
standard output

There are three points marked on the coordinate plane. The goal is to make a simple polyline, without self-intersections and self-touches, such that it passes through all these points. Also, the polyline must consist of only segments parallel to the coordinate axes. You are to find the minimum number of segments this polyline may consist of.

Input

Each of the three lines of the input contains two integers. The i-th line contains integers xi and yi ( - 109 ≤ xi, yi ≤ 109) — the coordinates of the i-th point. It is guaranteed that all points are distinct.

Output

Print a single number — the minimum possible number of segments of the polyline.

Examples
Input
1 -1
1 1
1 2
Output
1
Input
-1 -1
-1 3
4 3
Output
2
Input
1 1
2 3
3 2
Output
3
Note

The variant of the polyline in the first sample: The variant of the polyline in the second sample: The variant of the polyline in the third sample:


题目大意:

给你三个点,问你最少用几条如样例图所示的平行于坐标轴的线,就能将三个点串在一起。


思路:


1、首先判断1的情况,同样也是最好判的情况,当三个点的x坐标相同的时候,或者三个点的y坐标相同的时候,即输出1.


2、然后我们分析,一共就三个点,最多其实也就用三条线就足够了,那么我们要么讨论2的情况,其余就是3,要么讨论3的情况,其余就是2,我这里讨论2的情况:

①对应任意两点的y坐标相同,那么另外一点的x坐标如果等于这两个坐标的任意一个是可行解,或者这另外一点的x坐标如果在这两个坐标的x坐标的左边或者右边都是可行解(如图):


3、那么如果对应两点x坐标相同也是同理。那么我们对应三个点,判断六次即可。


Ac代码:

#include<stdio.h>
#include<string.h>
#include<iostream>
using namespace std;
struct node
{
    int x,y;
}a[5];
int main()
{
    while(~scanf("%d%d%d%d%d%d",&a[0].x,&a[0].y,&a[1].x,&a[1].y,&a[2].x,&a[2].y))
    {
        if(a[0].x==a[1].x&&a[1].x==a[2].x){printf("1\n");continue;}
        if(a[0].y==a[1].y&&a[1].y==a[2].y){printf("1\n");continue;}
        if(a[0].x==a[1].x)
        {
            if(a[0].y==a[2].y||a[1].y==a[2].y)
            {
                printf("2\n");
                continue;
            }
            if(a[2].y<min(a[0].y,a[1].y)||a[2].y>max(a[0].y,a[1].y))
            {
                printf("2\n");
                continue;
            }
        }
        if(a[0].x==a[2].x)
        {
            if(a[0].y==a[1].y||a[1].y==a[2].y)
            {
                printf("2\n");
                continue;
            }
            if(a[1].y<min(a[0].y,a[2].y)||a[1].y>max(a[0].y,a[2].y))
            {
                printf("2\n");
                continue;
            }
        }
        if(a[1].x==a[2].x)
        {
            if(a[1].y==a[0].y||a[2].y==a[0].y)
            {
                printf("2\n");
                continue;
            }
            if(a[0].y<min(a[1].y,a[2].y)||a[0].y>max(a[1].y,a[2].y))
            {
                printf("2\n");
                continue;
            }
        }
        if(a[0].y==a[1].y)
        {
            if(a[0].x==a[2].x||a[1].x==a[2].x)
            {
                printf("2\n");
                continue;
            }
            if(a[2].x<min(a[1].x,a[0].x)||a[2].x>max(a[1].x,a[0].x))
            {
                printf("2\n");
                continue;
            }
        }
        if(a[0].y==a[2].y)
        {
            if(a[0].x==a[1].x||a[1].x==a[2].x)
            {
                printf("2\n");
                continue;
            }
            if(a[1].x<min(a[0].x,a[2].x)||a[1].x>max(a[0].x,a[2].x))
            {
                printf("2\n");
                continue;
            }
        }
        if(a[1].y==a[2].y)
        {
            if(a[1].x==a[0].x||a[2].x==a[0].x)
            {
                printf("2\n");
                continue;
            }
            if(a[0].x<min(a[1].x,a[2].x)||a[0].x>max(a[1].x,a[2].x))
            {
                printf("2\n");
                continue;
            }
        }
        printf("3\n");
    }
}




### Codeforces 1487D Problem Solution The problem described involves determining the maximum amount of a product that can be created from given quantities of ingredients under an idealized production process. For this specific case on Codeforces with problem number 1487D, while direct details about this exact question are not provided here, similar problems often involve resource allocation or limiting reagent type calculations. For instance, when faced with such constraints-based questions where multiple resources contribute to producing one unit of output but at different ratios, finding the bottleneck becomes crucial. In another context related to crafting items using various materials, it was determined that the formula `min(a[0],a[1],a[2]/2,a[3]/7,a[4]/4)` could represent how these limits interact[^1]. However, applying this directly without knowing specifics like what each array element represents in relation to the actual requirements for creating "philosophical stones" as mentioned would require adjustments based upon the precise conditions outlined within 1487D itself. To solve or discuss solutions effectively regarding Codeforces' challenge numbered 1487D: - Carefully read through all aspects presented by the contest organizers. - Identify which ingredient or component acts as the primary constraint towards achieving full capacity utilization. - Implement logic reflecting those relationships accurately; typically involving loops, conditionals, and possibly dynamic programming depending on complexity level required beyond simple minimum value determination across adjusted inputs. ```cpp #include <iostream> #include <vector> using namespace std; int main() { int n; cin >> n; vector<long long> a(n); for(int i=0;i<n;++i){ cin>>a[i]; } // Assuming indices correspond appropriately per problem statement's ratio requirement cout << min({a[0], a[1], a[2]/2LL, a[3]/7LL, a[4]/4LL}) << endl; } ``` --related questions-- 1. How does identifying bottlenecks help optimize algorithms solving constrained optimization problems? 2. What strategies should contestants adopt when translating mathematical formulas into code during competitive coding events? 3. Can you explain why understanding input-output relations is critical before implementing any algorithmic approach? 4. In what ways do prefix-suffix-middle frameworks enhance model training efficiency outside of just tokenization improvements? 5. Why might adjusting sample proportions specifically benefit models designed for tasks requiring both strong linguistic comprehension alongside logical reasoning skills?
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值