hdu 1690 Bus System【floyd】

本文介绍了一种基于公交系统的最短路径算法实现方法,通过Floyd算法计算两点间最小费用,适用于城市公交路线规划问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Bus System

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 7908    Accepted Submission(s): 2068


Problem Description
Because of the huge population of China, public transportation is very important. Bus is an important transportation method in traditional public transportation system. And it’s still playing an important role even now.
The bus system of City X is quite strange. Unlike other city’s system, the cost of ticket is calculated based on the distance between the two stations. Here is a list which describes the relationship between the distance and the cost.



Your neighbor is a person who is a really miser. He asked you to help him to calculate the minimum cost between the two stations he listed. Can you solve this problem for him?
To simplify this problem, you can assume that all the stations are located on a straight line. We use x-coordinates to describe the stations’ positions.
 

Input
The input consists of several test cases. There is a single number above all, the number of cases. There are no more than 20 cases.
Each case contains eight integers on the first line, which are L1, L2, L3, L4, C1, C2, C3, C4, each number is non-negative and not larger than 1,000,000,000. You can also assume that L1<=L2<=L3<=L4.
Two integers, n and m, are given next, representing the number of the stations and questions. Each of the next n lines contains one integer, representing the x-coordinate of the ith station. Each of the next m lines contains two integers, representing the start point and the destination.
In all of the questions, the start point will be different from the destination.
For each case,2<=N<=100,0<=M<=500, each x-coordinate is between -1,000,000,000 and 1,000,000,000, and no two x-coordinates will have the same value.
 

Output
For each question, if the two stations are attainable, print the minimum cost between them. Otherwise, print “Station X and station Y are not attainable.” Use the format in the sample.
Sample Input
2
1 2 3 4 1 3 5 7
4 2
1
2
3
4
1 4
4 1
1 2 3 4 1 3 5 7
4 1
1
2
3
10
1 4
 


Sample Output
Case 1:
The minimum cost between station 1 and station 4 is 3.
The minimum cost between station 4 and station 1 is 3.
Case 2:
Station 1 and station 4 are not attainable.
 
 



Source
 

题目大意:t组样例,给出八个值,L1,L2,L3,L4,C1,C2,C3,C4,分别对应图表中的含义,接下来两个值,n,m,一共n个点m个询问,接下来n行, 表示各个节点x坐标。m个询问两个点之间的最小花费。

这个题两个点之间一定是最短的,我们要求的是最小花费,所以我们对花费进行floyd算法的实现,注意几个点:

1、数据比较大,该用int64的就别用int,会wa。

2、输出的地方别拉了东西。

3、初始化要足够大,我们这里花费的取值范围比较大, 所以初始化也一定要足够大才能够AC。

AC代码:

#include<stdio.h>
#include<string.h>
#include<iostream>
#include<math.h>
#include<stdlib.h>
#include<climits>
using namespace std;
#define ll __int64
#define inf 1e18
ll map[105][105];
ll x[105];
int  n,m;
ll L1, L2, L3, L4, C1, C2, C3, C4;
void init()
{
    for(int  i=1;i<=n;i++)
    {
        for(int  j=1;j<=n;j++)
        {
            map[i][j]=inf;
        }
    }
}
void floyd()
{
    for(int i=1;i<=n;i++)
    {
        for(int  j=1;j<=n;j++)
        {
            for(int  k=1;k<=n;k++)
            {
                map[j][k]=min(map[j][k],map[j][i]+map[i][k]);
            }
        }
    }
}
ll  getscore(ll dis)
{
    if(dis>0&&dis<=L1)return C1;
    if(dis>L1&&dis<=L2)return C2;
    if(dis>L2&&dis<=L3)return C3;
    if(dis>L3&&dis<=L4)return C4;
    return inf;
}
int  main()
{
    int  kase=0;
    int  t;
    scanf("%d",&t);
    while(t--)
    {
        scanf("%I64d%I64d%I64d%I64d%I64d%I64d%I64d%I64d",&L1,&L2,&L3,&L4,&C1,&C2,&C3,&C4);
        scanf("%d%d",&n,&m);
        init();
        for(int  i=1;i<=n;i++)
        {
            scanf("%I64d",&x[i]);
        }
        for(int  i=1;i<=n;i++)
        {
            for(int j=1;j<=n;j++)
            {
                map[i][j]=map[j][i]=getscore((abs)(x[i]-x[j]));
            }
        }
        floyd();
        //printf("%I64d\n",map[1][4]);
        printf("Case %d:\n",++kase);
        while(m--)
        {
            int  u,v;
            scanf("%d%d",&u,&v);
            if(map[u][v]!=inf)
            printf("The minimum cost between station %d and station %d is %I64d.\n",u,v,map[u][v]);
            if(map[u][v]==inf)
            printf("Station %d and station %d are not attainable.\n",u,v);
        }
    }
}














内容概要:本文深入解析了扣子COZE AI编程及其详细应用代码案例,旨在帮助读者理解新一代低门槛智能体开发范式。文章从五个维度展开:关键概念、核心技巧、典型应用场景、详细代码案例分析以及未来发展趋势。首先介绍了扣子COZE的核心概念,如Bot、Workflow、Plugin、Memory和Knowledge。接着分享了意图识别、函数调用链、动态Prompt、渐进式发布及监控可观测等核心技巧。然后列举了企业内部智能客服、电商导购助手、教育领域AI助教和金融行业合规质检等应用场景。最后,通过构建“会议纪要智能助手”的详细代码案例,展示了从需求描述、技术方案、Workflow节点拆解到调试与上线的全过程,并展望了多智能体协作、本地私有部署、Agent2Agent协议、边缘计算插件和实时RAG等未来发展方向。; 适合人群:对AI编程感兴趣的开发者,尤其是希望快速落地AI产品的技术人员。; 使用场景及目标:①学习如何使用扣子COZE构建生产级智能体;②掌握智能体实例、自动化流程、扩展能力和知识库的使用方法;③通过实际案例理解如何实现会议纪要智能助手的功能,包括触发器设置、下载节点、LLM节点Prompt设计、Code节点处理和邮件节点配置。; 阅读建议:本文不仅提供了理论知识,还包含了详细的代码案例,建议读者结合实际业务需求进行实践,逐步掌握扣子COZE的各项功能,并关注其未来的发展趋势。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值