【图像去噪】基于CTV-RPCA实现图像去噪和目标显著性检测附matlab代码

该文提出了一种新的3DCTV-RPCA模型,利用三维相关总变分正则化来处理同时具有低秩和局部平滑性的矩阵分解问题。在温和假设下,该模型能精确分解矩阵的各个组件,为相关方法提供了首个理论保证。此外,通过FFT实现的高效ADMM算法被提出用于解决优化问题,并在模拟和真实应用中验证了模型的有效性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机 

⛄ 内容介绍

It is known that the decomposition in low-rank and sparse matrices (\textbf{L+S} for short) can be achieved by several Robust PCA techniques. Besides the low rankness, the local smoothness (\textbf{LSS}) is a vitally essential prior for many real-world matrix data such as hyperspectral images and surveillance videos, which makes such matrices have low-rankness and local smoothness properties at the same time. This poses an interesting question: Can we make a matrix decomposition in terms of \textbf{L\&LSS +S } form exactly? To address this issue, we propose in this paper a new RPCA model based on three-dimensional correlated total variation regularization (3DCTV-RPCA for short) by fully exploiting and encoding the prior expression underlying such joint low-rank and local smoothness matrices. Specifically, using a modification of Golfing scheme, we prove that under some mild assumptions, the proposed 3DCTV-RPCA model can decompose both components exactly, which should be the first theoretical guarantee among all such related methods combining low rankness and local smoothness. In addition, by utilizing Fast Fourier Transform (FFT), we propose an efficient ADMM algorithm with a solid convergence guarantee for solving the resulting optimization problem. Finally, a series of experiments on both simulations and real applications are carried out to demonstrate the general validity of the proposed 3DCTV-RPCA model.

⛄ 部分代码

clear all;clc;

% addpath(genpath('../CTV_code/')) % linux/MacOS platform

addpath(genpath('..\CTV_code\')) % windows platform

%% load data

hsi_name = 'pure_DCmall_small';

load([hsi_name,'.mat'])

clean_data       = Ori_H;

clean_data       = Normalize(clean_data);

[M,N,p]        = size(clean_data);

tic

gaussian_level = 0.2;

sparse_level   = 0.0;

noise_data       = GetNoise(clean_data,gaussian_level,sparse_level);

D = reshape(noise_data,[M*N,p]);

mpsnr = zeros(3,1);

mssim = zeros(3,1);

ergas = zeros(3,1);

[mpsnr(1),mssim(1),ergas(1)]=msqia(clean_data, noise_data);

%% CTV-RPCA

it =2;

fprintf('======== CTV-RPCA  ========\n')

opts.rho = 1.5;

ctv_out = ctv_rpca(noise_data,opts);

[mpsnr(it),mssim(it),ergas(it)]=msqia(clean_data, ctv_out);

%% RPCA

it =3;

D       = zeros(M*N,p) ;

for i=1:p

    bandp = noise_data(:,:,i);

    D(:,i)= bandp(:);

end

fprintf('========   RPCA  ========\n')

A_hat = rpca_m(D);

rpca_out = reshape(A_hat,[M,N,p]);

[mpsnr(it),mssim(it),ergas(it)]=msqia(clean_data, rpca_out);

showband = 103;

figure;

Y = clean_data(:,:,showband);

subplot(2,2,1);imshow(Y,[]);title('original band')

Y = noise_data(:,:,showband);

subplot(2,2,2);imshow(Y,[]);title(['noise, psnr:',num2str(mpsnr(1))])

Y = ctv_out(:,:,showband);

subplot(2,2,3);imshow(Y,[]);title(['ctv-rpca, psnr:',num2str(mpsnr(2))])

Y = rpca_out(:,:,showband);

subplot(2,2,4);imshow(Y,[]);title(['rpca, psnr:',num2str(mpsnr(3))])

⛄ 运行结果

⛄ 参考文献

[1]  Shijila B ,  Tom A J ,  George S N . Moving Object Detection by Low Rank Approximation and l 1 -TV Regularization on RPCA framework[J]. Journal of Visual Communication and Image Representation, 2018, 56:188-200.

[2]  Wang S ,  Xia K ,  Wang L , et al. Improved RPCA method via non-convex regularisation for image denoising.  2020.

[3]  Peng J ,  Wang Y ,  Zhang H , et al. Exact Decomposition of Joint Low Rankness and Local Smoothness Plus Sparse Matrices[J]. arXiv e-prints, 2022.

⛳️ 代码获取关注我

❤️部分理论引用网络文献,若有侵权联系博主删除

❤️ 关注我领取海量matlab电子书和数学建模资料

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值