【无人机】基于博弈论的无人机授权应急网络中用户设备关联模拟器附matlab代码

该工作评估了在灾难场景中使用游戏理论来确定无人机支持的蜂窝网络的用户关联策略,以最大化服务质量。通过Matlab仿真,研究了从5G网络、智能城市到无人机通信的灾后通信机会,对比了信号基础的用户关联和基于游戏理论的用户关联策略对灾后服务质量和效率的影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机 

⛄ 内容介绍

The availability of communication channels able to offer a good level of quality of service is pivotal after theoccurrence of a disaster in order to share critical info or to coordinate search and rescue operations.

With the developments in both Smart City and 5G paradigms new communication opportunities arise thanks to ad-hoc networks among smartphones and surviving IoT devices, cellular networks as well as wireless networks based on vehicles.

With all these opportunities, the choice of the communication medium to use to access the Internet by the user equipment must consider the quality of service achievable through each of them, while reducing the amount of energy consumed for communicating, given that it might not be possible to have access to energy sources.

This work evaluates the adoption of Game Theory to find association strategies that maximize the quality of service perceived in post-disaster scenarios in which UAVs have been deployed to support the cellular network.

⛄ 部分代码

% Add functions to path

addpath('association', 'constants', 'data', 'evaluation', 'disruption', 'performance', 'placement', 'utils');

% Set random number generator seed for reproducibility

% rng(6);

% Definition of the area of interest

vertex_1 = [40.77405, 14.79425];

vertex_2 = [40.76728, 14.80319];

altitude = 280;

origin = [min(vertex_1(1), vertex_2(1)) + (max(vertex_1(1), vertex_2(1)) - min(vertex_1(1), vertex_2(1))) / 2, ...

          min(vertex_1(2), vertex_2(2)) + (max(vertex_1(2), vertex_2(2)) - min(vertex_1(2), vertex_2(2))) / 2, altitude];

% Selection of network operator and technology

radio = ["LTE", "UMTS"];

mcc = 222;

mnc = [10, 6];

fprintf('Getting towers in the area ...');

towers_table = tower_placement(vertex_1, vertex_2, origin, altitude, radio, mcc, mnc);

fprintf('done!\n');

% User placement

number_of_users = 500;

fprintf('Placing users in the area ...');

users_table = user_placement(vertex_1, vertex_2, altitude, number_of_users);

fprintf('done!\n');

% Signal-based user association before disaster

fprintf('Performing signal-based user association before disaster ...');

[base_stations_info_table_sbbd, user_association_table_sbbd] = signal_based_association(users_table, towers_table, empty_uavs_table, true);

user_association_plot(users_table, towers_table, empty_uavs_table, user_association_table_sbbd, 'Signal-based pre-disaster');

fprintf('done!\n');

% Natural disaster simulation

center = [0, 0];

radius = 250;

destruction_probability = 0.4;

damage_probability = 0.8;

fprintf('Simulating disaster ...');

towers_table_ad = natural_disaster(center, radius, destruction_probability, damage_probability, towers_table);

fprintf('done!\n');

% Signal-based user association after disaster without UAVs

fprintf('Performing signal-based user association before disaster ...');

[base_stations_info_table_sbad, user_association_table_sbad] = signal_based_association(users_table, towers_table_ad, empty_uavs_table, true);

user_association_plot(users_table, towers_table_ad, empty_uavs_table, user_association_table_sbad, 'Signal-based post-disaster');

fprintf('done!\n');

% UAV placement

cell_size = 20;

max_uavs = 48;

fprintf('Placing UAVs in the area (this may take a while) ...\n');

uavs_table = uav_placement(vertex_1, vertex_2, origin, altitude, cell_size, max_uavs, users_table, towers_table_ad);

% Signal-based user association after disaster with UAVs deployed

fprintf('Performing signal-based user association after UAV deployment ...');

[base_stations_info_table_sbadwu, user_association_table_sbadwu] = signal_based_association(users_table, towers_table_ad, uavs_table, true);

user_association_plot(users_table, towers_table_ad, uavs_table, user_association_table_sbadwu, 'Signal-based post-disaster with UAVs deployed');

fprintf('done!\n');

% Game-theoretic user association after disaster with UAVs deployed

game_learning_rate = 0.05;

fprintf('Performing game-theoretic user association after UAV deployment ...');

[base_stations_info_table_gtadwu, user_association_table_gtadwu, changes_history] = game_theoretic_association(users_table, towers_table_ad, uavs_table, true, game_learning_rate);

user_association_plot(users_table, towers_table_ad, uavs_table, user_association_table_gtadwu, 'Game-theoretic post-disaster with UAVs deployed');

fprintf('done!\n');

% Plot user throughput distributions

throughput_distributions = [user_association_table_gtadwu.throughput user_association_table_sbadwu.throughput user_association_table_sbad.throughput user_association_table_sbbd.throughput];

labels = {'Ottimizzato', 'Post-disastro con UAV', 'Post-disastro', 'Pre-disastro'};

throughput_distribution_plot(throughput_distributions, labels);

% Plot the number of strategy changes for each round of the game

game_changes_history_plot(changes_history);

⛄ 运行结果

⛄ 参考文献

⛳️ 完整代码

❤️部分理论引用网络文献,若有侵权联系博主删除

❤️ 关注我领取海量matlab电子书和数学建模资料

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值