基于贝叶斯优化卷积神经网络结合长短记忆CNN-LSTM混合神经网络实现数据回归预测附Matlab代码

文章提出了一种结合贝叶斯优化的卷积神经网络与长短期记忆神经网络的组合模型,用于提高电力短期负荷预测的精度。通过贝叶斯优化选择最优参数,利用气象数据和电力负荷数据训练LSTM网络。在实际数据上的预测分析显示,该模型的预测精度较高,可作为可靠的预测工具。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机 

⛄ 内容介绍

考虑到气象因素对电力短期负荷预测精度存在影响,提出了一套贝叶斯优化卷积神经网络和长短期记忆神经网络(BO-CNN-LSTM)组合预测模型.通过贝叶斯优化算法优选出全局最优参数组合,再采用优选出的五类气象因素数据(日最高温度,日最低温度,日平均温度,日平均相对湿度,降雨量)以及实际电力负荷数据作为输入特征量对优化后的LSTM神经网络进行训练.最后对某地区的电力负荷数据进行预测分析,并与不同方法对比分析,证明了考虑气象因素后的BO-CNN-LSTM神经网络预测精度高,可以作为可靠的短期电力负荷预测工具.

⛄ 部分代码

clc;clear;close all;format compact

%%

data=xlsread('PA.xls','机组A风功率实测数据','B2:CS29')';

data=data(:);

% 头一天的29个值与预测日的5个气象值作为输入,预测日的24个负荷值做输出

n=96;

[x,y]=data_process(data,n);%前n个时刻 预测下一个时刻

%%

[m,n]=size(true_value);

true_value=reshape(true_value',[1,m*n]);

predict_value=reshape(predict_value',[1,m*n]);

disp('结果分析')

rmse=sqrt(mean((true_value-predict_value).^2));

disp(['根均方差(RMSE):',num2str(rmse)])

mae=mean(abs(true_value-predict_value));

disp(['平均绝对误差(MAE):',num2str(mae)])

mape=mean(abs((true_value-predict_value)./true_value));

disp(['平均相对百分误差(MAPE):',num2str(mape*100),'%'])

fprintf('\n')

%

figure

plot(true_value)

hold on

plot(predict_value)

legend('实际值','预测值')

⛄ 运行结果

​⛄ 参考文献

[1]胡晓丽, 张会兵, 董俊超,等. 基于CNN-LSTM的用户购买行为预测模型[J]. 计算机应用与软件, 2020, 37(6):6.

[2]肖世钊, 刘天恒, 张飞,等. 基于卷积神经网络与长短期记忆网络的多规格带钢精轧电耗分析预测[J]. 冶金自动化.

[3]邱凯旋, 李佳. 基于贝叶斯优化和长短期记忆神经网络(BO-LSTM)的短期电力负荷预测[J]. 电力学报, 2022, 37(5):7.

⛳️ 完整代码

❤️部分理论引用网络文献,若有侵权联系博主删除

❤️ 关注我领取海量matlab电子书和数学建模资料

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值