【智能优化算法】改进的侏儒猫鼬优化算法(IDMO)附matlab代码

本文提出了一种新的元启发式优化算法——矮獴优化算法(DMO),该算法模仿矮獴的觅食行为,并应用于解决经典及CEC2020基准函数等12个连续/离散工程优化问题。通过与其他七种算法的比较,验证了DMO的有效性和优越性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

⛄ 内容介绍

This paper proposes a new metaheuristic algorithm called dwarf mongoose optimization algorithm (DMO) to solve the classical and CEC 2020 benchmark functions and 12 continuous/discrete engineering optimization problems. The DMO mimics the foraging behavior of the dwarf mongoose. The restrictive mode of prey capture (feeding) has dramatically affected the mongooses' social behavior and ecological adaptations to compensate for efficient family nutrition. The compensatory behavioral adaptations of the mongoose are prey size, space utilization, group size, and food provisioning. Three social groups of the dwarf mongoose are used in the proposed algorithm, the alpha group, babysitters, and the scout group. The family forage as a unit, and the alpha female initiates foraging, determines the foraging path, the distance covered, and the sleeping mounds. A certain number of the mongoose population (usually a mixture of males and females) serve as the babysitters. They remain with the young until the group returns at midday or evening. The babysitters are exchanged for the first to forage with the group (exploitation phase). The dwarf mongooses do not build a nest for their young; they move them from one sleeping mound to another and do not return to the previously foraged site. The dwarf mongoose has adopted a seminomadic way of life in a territory large enough to support the entire group (exploration phase). The nomadic behavior prevents overexploitation of a particular area. It also ensures exploration of the whole territory because no previously visited sleeping mound is returned. The performance of the proposed DMO algorithm is compared with seven other algorithms to show its effectiveness in terms of different performance metrics and statistics. In most cases, the near-optimal solutions achieved by the DMO are better than the best solutions obtained by the current state-of-the-art algorithms.

⛄ 部分代码

%_______________________________________________________________________________________%

%  Dwarf Mongoose Optimization Algorithm source codes (version 1.0)                     %

%                                                                                       %

%  Developed in MATLAB R2015a (7.13)                                                    %

clear all 

clc

Solution_no=50;  % Number of search agents

F_name='F1';  % Name of the test function that can be from F1 to F23

M_Iter=200;  % Maximum numbef of iterations  

[LB,UB,Dim,F_obj]=Get_F(F_name); 

[Best_FF,Best_P,conv]=IDMO(Solution_no,M_Iter,LB,UB,Dim,F_obj);  

figure('Position',[200         300        770         267])

subplot(1,2,1);

func_plot(F_name);

title('Parameter space')

xlabel('x_1');

ylabel('x_2');

zlabel([F_name,'( x_1 , x_2 )'])

box on

axis tight

axis square

subplot(1,2,2);

semilogy(conv,'Color','r','LineWidth',1.5)

title('Convergence curve')

xlabel('Iteration#');

ylabel('Best score obtained so far');

box on

axis tight

axis squar

display(['The best-obtained solution by IDMO is : ', num2str(Best_P)]);

display(['The best optimal values of the objective funciton found by IDMO is : ', num2str(Best

⛄ 运行结果

⛄ 参考文献

[1] Agushaka J O ,  Ezugwu A E ,  Abualigah L . Dwarf Mongoose Optimization Algorithm[J]. Computer Methods in Applied Mechanics and Engineering, 2022(Mar.1):391.

⛄ 完整代码

❤️部分理论引用网络文献,若有侵权联系博主删除

❤️ 关注我领取海量matlab电子书和数学建模资料

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值