✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab仿真内容点击👇
⛄ 内容介绍
A novel approach for two-dimensional phase unwrapping is presented. Reliability functions with fixed value range are defined for pixels and edges. Through histogram statistics for reliability values of edges, all edges are allocated to the corresponding subintervals of histogram. The proposed algorithm unwraps the phase subinterval by subinterval and for each subinterval edge by edge. A number of simulated and experimental results show that the proposed algorithm reacts satisfactorily to random noise and discontinuities in the wrapped phase distribution. The execution time of this algorithm is less than 60 ms for an image size of 800x800 pixels on a PC system generally. So this algorithm can achieve quasi-real-time performance.
⛄ 部分代码
fprintf('***************************************\n');
fprintf('2D Phase Unwrapping Demo\n');
fprintf('Please select the demo:\n');
fprintf('(1) No noise , no ignored region\n');
fprintf(' 2. With noise, no ignored region\n');
fprintf(' 3. No noise , with ignored region\n');
fprintf(' 4. With noise, with ignored region\n');
while (1)
user_input = input('Your selection (1-4): ', 's');
user_input = strip(user_input);
% if the user does not supply anything, select the default
if strcmp(user_input, '')
fprintf('Demo 1 is selected\n');
user_input = '1';
end
if length(user_input) == 1 && sum(user_input == '1234') == 1
break;
else
fprintf('Invalid input\n');
end
end
[X, Y] = meshgrid(linspace(-1, 1, 512) * 5);
img = -(X.*X + Y.*Y);
fprintf('Image size: %dx%d pixels\n', size(img,1), size(img,2));
% add noise
if any(user_input == '24')
img = img + randn(size(X)) * 0.5;
end
% add an ignored region
if any(user_input == '34')
img(end/4:3*end/4,end/4:3*end/4) = nan;
end
% wrap the image
wimg = wrapTo2Pi(img);
tic;
unwrap_img = unwrap_phase(wimg);
toc;
subplot(221);
pcolor(img);
shading flat;
set(gca, 'ydir', 'reverse');
title('Original phase');
subplot(222);
pcolor(wimg);
shading flat;
set(gca, 'ydir', 'reverse');
title('Wrapped phase');
subplot(223);
pcolor(unwrap_img);
shading flat;
set(gca, 'ydir', 'reverse');
title('Unwrapped phase');
subplot(224);
pcolor(wrapTo2Pi(unwrap_img));
shading flat;
set(gca, 'ydir', 'reverse');
title('Rewrap of unwrapped phase');
⛄ 运行结果

⛄ 参考文献
[1] Wang F , Zeng Y N , Lei H , et al. Fast Two-Dimensional Phase Unwrapping Algorithm Based on Histogram Processing of Reliability[J]. Icmt.ulsan.ac.kr.
❤️ 关注我领取海量matlab电子书和数学建模资料
❤️部分理论引用网络文献,若有侵权联系博主删除
本文提出了一种新的二维相位解缠方法,通过定义固定值域的可靠性函数,并利用直方图统计对边缘进行子区间分配。该算法能够有效地处理随机噪声和相位包裹分布中的不连续性,且对于800x800像素的图像处理时间少于60毫秒,实现了准实时性能。
147

被折叠的 条评论
为什么被折叠?



