1 简介
运动目标的检测是数字图像处理和模式识别以及计算机视觉领域研究的主要内容之一,也是计算机视觉研究的一个重要领域.对基于背景差分法的视频目标检测的算法进行了研究.以Matlab为主体研究工具,对视频中的运动目标进行检测.对背景差分法的原理和算法进行了研究,并对其进行了详细的讨论和分析.利用中值滤波背景模型来提取背景,并对目标的阴影进行检测与抑制.实验结果表明,采用该算法对运动目标进行检测具有良好的准确性和稳定性.
2 部分代码
function varargout = object_tracking(varargin)% _____________________________________________________% Begin initialization code - DO NOT EDITgui_Singleton = 1;gui_State = struct('gui_Name', mfilename, ...'gui_Singleton', gui_Singleton, ...'gui_OpeningFcn', @object_tracking_OpeningFcn, ...'gui_OutputFcn', @object_tracking_OutputFcn, ...'gui_LayoutFcn', [] , ...'gui_Callback', []);if nargin && ischar(varargin{1})gui_State.gui_Callback = str2func(varargin{1});endif nargout[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});elsegui_mainfcn(gui_State, varargin{:});end% End initialization code - DO NOT EDIT% --- Executes just before object_tracking is made visible.function object_tracking_OpeningFcn(hObject, eventdata, handles, varargin)movegui(hObject,'center')imaqreset% ID of video sourcehandles.fuente=2;%Disable "Start" and "Stop" buttonsset(handles.inicio,'Enable','off');set(handles.parar,'Enable','off');set(hObject,'UserData',0)set(handles.axes1,'XTickLabel',[],'YTickLabel',[])% Choose default command line output for object_trackinghandles.output = hObject;% Update handles structureguidata(hObject, handles);% --- Outputs from this function are returned to the command line.function varargout = object_tracking_OutputFcn(hObject, eventdata, handles)% Get default command line output from handles structurevarargout{1} = handles.output;% --- FUNCTION TO GET BACKGROUNDfunction cap_fondo_Callback(hObject, eventdata, handles)% Reset imaq deviceimaqresetset(hObject,'UserData',0) %User data 0 (1 stop capture)% Enable "Start" and "Stop" buttonsset(handles.inicio,'Enable','off');set(handles.parar,'Enable','off');% Disable current buttonset(hObject,'Enable','off');% Get default sourcesel_fuente=handles.fuente;switch sel_fuente% _________________________________________________________________case 1 %WEB CAM% Open GUI to select the camera to usesel_camera%uiwait% Bring the camera features% id= Camera ID% es_web_ext= indicator if laptop or external cameraglobal id es_web_ext% Determine format depending on the type of camera to useif es_web_ext==0formato='YUY2_176x144';elseformato='RGB24_320x240';endtry% Create video objectvid = videoinput('winvideo',id,formato);% Update handlesguidata(hObject, handles);catchfunction parar_Callback(hObject, eventdata, handles)set(hObject,'userdata',1)guidata(hObject, handles)% --- SELECTION OF VIDEO SOURCEfunction uipanel1_SelectionChangeFcn(hObject, eventdata, handles)if hObject==handles.video_op %VIDEO AVIhandles.fuente=2;elsehandles.fuente=1; % WEBCAMendguidata(hObject,handles)function umbral_Callback(hObject, eventdata, handles)% --- Executes during object creation, after setting all properties.function umbral_CreateFcn(hObject, eventdata, handles)if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))set(hObject,'BackgroundColor','white');end
3 仿真结果

4 参考文献
[1]汪国强, 盖琪琳, 于怀勇,等. 基于背景差分法的视频目标检测算法研究[J]. 黑龙江大学工程学报, 2014, 5(4):5.
博主简介:擅长智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,相关matlab代码问题可私信交流。
部分理论引用网络文献,若有侵权联系博主删除。
本文探讨了运动目标检测在数字图像处理和计算机视觉中的重要性,专注于基于背景差分法的视频目标检测算法。通过使用Matlab进行研究,实现了对视频中运动目标的检测。文章详细介绍了背景差分法的原理,并应用中值滤波背景模型来消除阴影,提高了检测的准确性和稳定性。实验结果显示该算法表现良好。
1811

被折叠的 条评论
为什么被折叠?



