1 简介
一种基于混合A*算法的两段式自主泊车路径规划方法,包括:将泊车路径分为第一段和第二段;第一段为从车辆进入停车场到车辆行驶到最小泊车距离点的路径,第二段为车辆从最小泊车距离点行驶到泊车终止点的路径。


2 部分代码
% Main entry:ObstList = [-25:25;15*ones(1,51)]'; % Obstacle point listObstList = [ObstList; [-10: 10; 0*ones(1,21)]'];ObstList = [ObstList; [-25:-10; 5*ones(1,16)]'];ObstList = [ObstList; [ 10: 25; 5*ones(1,16)]'];ObstList = [ObstList; [ 10*ones(1,6);0: 5;]'];ObstList = [ObstList; [-10*ones(1,6);0: 5;]'];% Park lot line for collision checkObstLine = [-25, 15 , 25, 15;-25, 5, -10, 5;-10, 5, -10, 0;-10, 0, 10, 0;10, 0, 10, 5;10, 5, 25, 5;-25, 5, -25, 15;25, 5, 25, 15];% ObstList and ObstLineObstInfo.ObstList = ObstList;ObstInfo.ObstLine = ObstLine;% ObstInfo.ObstMap = GridAStar(ObstList,End,XY_GRID_RESOLUTION);Vehicle.WB = 3.7; % [m] wheel base: rear to front steerVehicle.W = 2.6; % [m] width of vehicleVehicle.LF = 4.5; % [m] distance from rear to vehicle front end of vehicleVehicle.LB = 1.0; % [m] distance from rear to vehicle back end of vehicleVehicle.MAX_STEER = 0.6; % [rad] maximum steering angleVehicle.MIN_CIRCLE = Vehicle.WB/tan(Vehicle.MAX_STEER); % [m] mininum steering circle radius% Motion resolution defineConfigure.MOTION_RESOLUTION = 0.1; % [m] path interporate resolutionConfigure.N_STEER = 20.0; % number of steer commandConfigure.EXTEND_AREA = 0; % [m] map extend lengthConfigure.XY_GRID_RESOLUTION = 2.0; % [m]Configure.YAW_GRID_RESOLUTION = deg2rad(15.0); % [rad]% Grid boundConfigure.MINX = min(ObstList(:,1))-Configure.EXTEND_AREA;Configure.MAXX = max(ObstList(:,1))+Configure.EXTEND_AREA;Configure.MINY = min(ObstList(:,2))-Configure.EXTEND_AREA;Configure.MAXY = max(ObstList(:,2))+Configure.EXTEND_AREA;Configure.MINYAW = -pi-0.01;Configure.MAXYAW = pi;% Cost related defineConfigure.SB_COST = 0; % switch back penalty costConfigure.BACK_COST = 1.5; % backward penalty costConfigure.STEER_CHANGE_COST = 1.5; % steer angle change penalty costConfigure.STEER_COST = 1.5; % steer angle change penalty costConfigure.H_COST = 10; % Heuristic costStartState = [22, 13, pi ];EndState = [7, 2, pi/2];[x,y,th,~,~] = HybridAStar(StartState,EndState,Vehicle,Configure,ObstInfo);if isempty(x)disp("Failed to find path!")elsehold on;VehicleAnimation(x,y,th,Configure,Vehicle,ObstInfo)end
3 仿真结果

4 参考文献
[1]张瑶港, 陈国迎, 高振海,等. 一种基于混合A*算法的两段式自主泊车路径规划方法:, CN112606830A[P]. 2021.
博主简介:擅长智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,相关matlab代码问题可私信交流。
部分理论引用网络文献,若有侵权联系博主删除。
本文介绍了一种基于混合A*算法的两阶段自主泊车路径规划方法,通过分段处理,首先找到从入口到最近停车点的路径,再规划从该点到泊车终点的路径。代码展示了如何设置障碍物、车辆参数和路径规划参数,以及最终路径搜索结果和仿真应用。

被折叠的 条评论
为什么被折叠?



