04-树5 Root of AVL Tree
分数 25
作者 陈越
单位 浙江大学
An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child subtrees of any node differ by at most one; if at any time they differ by more than one, rebalancing is done to restore this property. Figures 1-4 illustrate the rotation rules.
Now given a sequence of insertions, you are supposed to tell the root of the resulting AVL tree.
Input Specification:
Each input file contains one test case. For each case, the first line contains a positive integer N (≤20) which is the total number of keys to be inserted. Then N distinct integer keys are given in the next line. All the numbers in a line are separated by a space.
Output Specification:
For each test case, print the root of the resulting AVL tree in one line.
Sample Input 1:
5
88 70 61 96 120
Sample Output 1:
70
Sample Input 2:
7
88 70 61 96 120 90 65
Sample Output 2:
88
代码长度限制
16 KB
时间限制
400 ms
内存限制
64 MB
C++ (g++)
思路:
int max(int a,int b):
返回两个数的最大值
int getHeight(AVLTree t):
如果是空树,返回; 否则返回左右子树的高度最大值
AVLTree SingleLeftRotation(AVLTree a):
左旋 将a的左孩子给b 然后将b的右孩子给a的左孩子 a变成b的右孩子 求a的高度,求b的高度,返回b。
AVLTree SingleRightRotation(AVLTree a):
右旋 将a的右孩子给b 然后将b的左孩子给a的右孩子 a变成b的左孩子 求a的高度,b的高度,返回b。
AVLTree DoubleLeftRightRotation(AVLTree a):
左右旋 对a的左孩子求右旋然后返回给a的左孩子 返回a的右旋
AVLTree DoubleRightLeftRotation(AVLTree a):
右左旋 对a的右孩子求左旋然后返回给a的右孩子 返回a的左旋
AVLTree Insert(int x,AVLTree t):
如果树空,那先创建一个树开辟空间赋值等一系列操作 否则判断插入左树还是右树 左树:如果平衡因子为2,如果x小于要插入的左树根结点,
返回左旋值 否则返回左右旋值 右树:同理,x大于 返回右旋值 否则返回右左旋值 求树的高度 返回树
主函数:
输入结点个数,讲树初始化为空,逐个插入值,输出根结点的值。
AC代码:
#include<bits/stdc++.h>
using namespace std;
typedef struct AVLNode* AVLTree;
struct AVLNode{
int val;
AVLTree Left;
AVLTree Right;
int height;
};
//求树的深度的函数
int max(int a,int b)
{
return a>b?a:b;
}
int getHeight(AVLTree t)
{
if(t) return max(getHeight(t->Left),getHeight(t->Right))+1;
else return 0;
}
AVLTree SingleLeftRotation(AVLTree a)
{
//左旋
AVLTree b=a->Left;
a->Left=b->Right;
b->Right=a;
a->height=max(getHeight(a->Left),getHeight(a->Right))+1;
b->height=max(getHeight(b->Left),getHeight(b->Right))+1;
return b;
}
AVLTree SingleRightRotation(AVLTree a)
{
//右选
AVLTree b=a->Right;
a->Right=b->Left;
b->Left=a;
a->height=max(getHeight(a->Left),getHeight(a->Left))+1;
b->height=max(getHeight(b->Left),getHeight(b->Right))+1;
return b;
}
AVLTree DoubleLeftRightRotation(AVLTree a)
{
//左右旋
a->Left=SingleRightRotation(a->Left);
return SingleLeftRotation(a);
}
AVLTree DoubleRightLeftRotation(AVLTree a)
{
//右左旋
a->Right=SingleLeftRotation(a->Right);
return SingleRightRotation(a);
}
AVLTree Insert(int x,AVLTree t)
{
//插入x到AVL中,并返回调整后的AVL树
if(!t){
t=(AVLTree)malloc(sizeof(struct AVLNode));
t->val=x;
t->height=0;
t->Left=t->Right=NULL;
}
else if(x<t->val){
t->Left=Insert(x,t->Left);
if(getHeight(t->Left)-getHeight(t->Right)==2){
if(x<t->Left->val) t=SingleLeftRotation(t);
else t=DoubleLeftRightRotation(t);
}
}
else if(x>t->val){
t->Right=Insert(x,t->Right);
if(getHeight(t->Right)-getHeight(t->Left)==2){
if(x>t->Right->val) t=SingleRightRotation(t);
else t=DoubleRightLeftRotation(t);
}
}
t->height=max(getHeight(t->Left),getHeight(t->Right))+1;
return t;
}
int main()
{
int N;
cin>>N;
AVLTree avl=NULL;
for(int i=0;i<N;i++){
int t;
cin>>t;
avl=Insert(t,avl);
}
cout<<avl->val;
return 0;
}