**04-树5 Root of AVL Tree (25 分)** 初识二叉平衡树

这篇博客介绍了AVL树的基本概念,这是一种自我平衡的二叉搜索树。当AVL树中任意节点的两个子树高度差超过1时,需要通过旋转规则进行重新平衡。输入包含插入的整数序列,输出是最终AVL树的根节点值。示例展示了不同插入序列产生的根节点变化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

04-树5 Root of AVL Tree (25 分)
An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child subtrees of any node differ by at most one; if at any time they differ by more than one, rebalancing is done to restore this property. Figures 1-4 illustrate the rotation rules.

Now given a sequence of insertions, you are supposed to tell the root of the resulting AVL tree.
Input Specification:
Each input file contains one test case. For each case, the first line contains a positive integer N (≤20) which is the total number of keys to be inserted. Then N distinct integer keys are given in the next line. All the numbers in a line are separated by a space.

Output Specification:
For each test case, print the root of the resulting AVL tree in one line.

Sample Input 1:
5
88 70 61 96 120
Sample Output 1:
70
Sample Input 2:
7
88 70 61 96 120 90 65
Sample Output 2:
88

#define _CRT_SECURE_NO_WARNINGS
#include<stdio.h>
#include<stdlib.h>
struct tree
{
   
	int value;
	struct tree* left;
	struct tree* right;
	int height;
	int bf;
};
typedef struct tree AVL;
int minemax(int a, int b)
{
   
	return ((a > b) ? a : b);
}
int getheight(AVL* node)/获取以node为根节点的树的高度值,规定空树的高度值为-1
{
   
	if (node == NULL) return -1;
	else
		node->height= minemax(getheight(node->left),getheight(node->right))
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值