广义逆主要是为了把逆计算推广到奇异矩阵和非方阵. 广义逆矩阵是Moore首先明确提出来, 凭借他天才的几何直觉,利用正交投影算子来定义广义逆,但由于这类定义较为抽象而且不能进行有效运作,所以在之后的30年并未引起人们的注意.直到1955年,Penrose以更直接明确的代数形式给出了Moore广义逆矩阵的定义,他用四个方程再次定义了广义逆,并证明了A+的唯一性,还建立了A(1)与线性方程组Ax=b的解的联系,从那时起广义逆的研究开始蓬勃发展.
1. 广义逆介绍
定义: m x n的矩阵A∈C, 若n x m的矩阵X∈C 满足四个Moore-Penrose方程: (1) AXA=A; (2) XAX=X; (3) (AX)^H = AX; (4) (XA)^H = XA; 中的一个或者多个,则称X为A的广义逆矩阵.
由此可见A的广义逆一共有15类. 如果矩阵G满足第i个方程,则记为 G=A(i) , 如果满足多个,则记为 G=A(i,j,k) . 如果G满足全部四个方程,记为 G = A+.
满足第i类方程的集合记为 A{i}, 相应满足多类则记为 A{i,j} . 其中A{1} 叫做减号逆, 记为 A- , 而 A+ 叫做加号逆或者伪逆.
2. 加号逆介绍
A+ 的存在是唯一的. 当A可逆,A的逆就是加号逆. 下面构造性证明其存在性:
对A进行奇异值分解, 得到 A = V S U^H ,可以想象一下加号逆G要怎么构造. 令G = U S^-1 V^H (其中S^-1是把Sr取逆,其余零不变) , 那么可以验证G满足四个方程.
唯一性证明则是 设X,Y都是A的加号逆, 由 X 反复利用四个公式转换成 Y. 思路是两个A 和一个X可以变成一个A,这样就少了一个X, 转换几次就OK了. 过程如下:
X = XAX = X (AX)^H = X X^H A^H = X X^H (AYA)^H = X X^H A^H Y^H A^H = X X^H A^H (AY)^H = X X^H A^H A Y = X (A X A) Y = X A Y = X A (Y A Y)=X A (Y A) Y = X A A^H Y^H Y = (X A) A^H Y^H Y = A^H X^H A^H Y^H Y = (AXA)^H Y^H Y = YAY = Y.