数字滤波器设计与Z变换:原理、方法与应用
1. 滤波器类型与设计基础
在信号处理领域,滤波器起着至关重要的作用,常见的滤波器类型包括低通滤波器(LPF)、高通滤波器(HPF)、带通滤波器(BPF)和带阻滤波器(BSF)。低通滤波器是其他滤波器类型的基础,通过它可以指定特定的频率带进行信号的通过或阻挡。通过进一步的数学处理,可以将低通滤波器转换为其他类型的滤波器,具体转换过程如下:
graph LR
A[低通滤波器] -->|频率反转| B[高通滤波器]
A -->|频率偏移| C[带通滤波器]
A -->|幅度反转| D[带阻滤波器]
B -->|时间偏移(因果性)| E[最终高通滤波器]
C -->|时间偏移(因果性)| F[最终带通滤波器]
D -->|时间偏移(因果性)| G[最终带阻滤波器]
A -->|时间偏移(因果性)| H[最终低通滤波器]
在滤波器设计过程中,还需要考虑滤波器的线性、时不变性和因果性。无限长滤波器可以通过递归反馈实现,利用输入和最近的输出来构建。傅里叶变换将卷积和简化为频域中的乘法,因此频域中的脉冲响应(即频率响应)可以用来描述滤波器的特性。
2. 滤波器设计问题与解答
以下是一些常见的滤波器设计问题及解答:
1. 从单位阶跃响应获取脉冲响应 :单位阶跃响应是系统在单位阶跃输入下的输出。可以通过对单位阶跃响应进行求导来获得脉冲响应。
2. 级联和并联滤波
超级会员免费看
订阅专栏 解锁全文
753

被折叠的 条评论
为什么被折叠?



