-
已知 f ( x ) = 1 + x + x 2 + ⋯ + x n − 1 f(x) = 1 + x + x^2 + \cdots + x^{n-1} f(x)=1+x+x2+⋯+xn−1,证明: f ( x ) ∣ [ f ( x ) + x n ] 2 − x n f(x) \mid \left[f(x) + x^n \right]^2 - x^n f(x)∣[f(x)+xn]2−xn。
x f ( x ) = x + x 2 + x 3 + ⋯ + x n xf(x) = x + x^2 + x^3 + \cdots + x^n xf(x)=x+x2+x3+⋯+xn
x f ( x ) − f ( x ) = x n − 1 xf(x) - f(x) = x^n - 1 xf(x)−f(x)=xn−1
现在计算 [ f ( x ) + x n ] 2 − x n \left[f(x) + x^n\right]^2 - x^n [f(x)+xn]2−xn:
[ f ( x ) + x n ] 2 − x n = f 2 ( x ) + 2 x n f ( x ) + x n ( x n − 1 ) = f 2 ( x ) + 2 x n f ( x ) + x n ( x − 1 ) f ( x ) = f ( x ) [ f ( x ) + x n + x n + 1 ] \begin{align*} \left [f(x) + x^n\right]^2 - x^n &= f^2(x) + 2x^n f(x) + x^n(x^n - 1) \\ &= f^2(x) + 2x^n f(x) + x^n(x - 1)f(x) \\ &= f(x) \left [f(x) + x^n + x^{n+1}\right] \end{align*} [f(x)+xn]2−xn=f2(x)+2xnf(x)+xn(xn−1)=f2(x)+2xnf(x)+xn(x−1)f(x)=f(x)[f(x)+xn+xn+1]
因此可以得出结论, [ f ( x ) + x n ] 2 − x n \left[f(x) + x^n\right]^2 - x^n [f(x)+xn]2−xn 是 f ( x ) f(x) f(x) 的倍数。
-
计算 n n n 阶行列式:
D n = ∣ x 1 2 − 2 x 1 x 2 ⋯ x 1 x n x 2 x 1 x 2 2 − 2 ⋯ x 2 x n ⋮ ⋮ ⋱ ⋮ x n x 1 x n x 2 ⋯ x n 2 − 2 ∣ D_n = \left| \begin{array}{cccc} x_1^2 - 2 & x_1 x_2 & \cdots & x_1 x_n \\ x_2 x_1 & x_2^2 - 2 & \cdots & x_2 x_n \\ \vdots & \vdots & \ddots & \vdots \\ x_n x_1 & x_n x_2 & \cdots & x_n^2 - 2 \end{array} \right| Dn= x12−2x2x1⋮xnx1x1x2x22−2⋮xnx2⋯⋯⋱⋯x1xnx2xn⋮xn2−2
记向量:
α = [ x 1 x 2 ⋮ x n ] \alpha = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} α= x1x2⋮xn
计算 D n D_n Dn 的值:
D n = ∣ α α T − 2 E n ∣ = ( − 1 ) n ∣ 2 E n − α α T ∣ = ( − 1 ) n 2 n − 1 ∣ 2 E 1 − α T α ∣ = ( − 2 ) n ( 1 − 1 2 ∑ k = 1 n x k 2 ) \begin{align*} D_n &= \left| \alpha \alpha^T - 2E_n \right| \\ &= (-1)^n \left| 2E_n - \alpha \alpha^T \right| \\ &= (-1)^n 2^{n-1} \left| 2E_1 - \alpha^T \alpha \right| \\ &= (-2)^n \left( 1 - \frac{1}{2} \sum_{k = 1}^n x_k^2 \right) \end{align*} Dn= ααT−2En =(−1)n 2En−ααT =(−1)n2n−1 2E1−αTα =(−2)n(1−21k=1∑nxk2)
进一步展开计算:
D n = ∣ 1 x 1 x 2 ⋯ x n 0 x 1 2 − 2 x 1 x 2 ⋯ x 1 x n 0 x 2 x 1 x 2 2 − 2 ⋯ x 2 x n 0 ⋮ ⋮ ⋱ ⋮ 0 x n x 1 x n x 2 ⋯ x n 2 − 2 ∣ = ∣ 1 x 1 x 2 ⋯ x n − x 1 − 2 0 ⋯ 0 − x 2 0 − 2 ⋯ 0 ⋮ ⋮ ⋮ ⋱ ⋮ − x n 0 0 ⋯ − 2 ∣ = 1 2 ∣ 2 x 1 x 2 ⋯ x n − 2 x 1 − 2 0 ⋯ 0 − 2 x 2 0 − 2 ⋯ 0 ⋮ ⋮ ⋮ ⋱ ⋮ − 2 x n 0 0 ⋯ − 2 ∣ = ( − 2 ) n − 1 ( 1 − 1 2 ∑ k = 1 n x k 2 ) \begin{align*} D_n &= \left| \begin{array}{ccccc} 1 & x_1 & x_2 & \cdots & x_n \\ 0 & x_1^2 - 2 & x_1 x_2 & \cdots & x_1 x_n \\ 0 & x_2 x_1 & x_2^2 - 2 & \cdots & x_2 x_n \\ 0 & \vdots & \vdots & \ddots & \vdots \\ 0 & x_n x_1 & x_n x_2 & \cdots & x_n^2 - 2 \end{array} \right| \\ &= \left| \begin{array}{ccccc} 1 & x_1 & x_2 & \cdots & x_n \\ -x_1 & -2 & 0 & \cdots & 0 \\ -x_2 & 0 & -2 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ -x_n & 0 & 0 & \cdots & -2 \end{array} \right| \\ &= \frac{1}{2} \left| \begin{array}{ccccc} 2 & x_1 & x_2 & \cdots & x_n \\ -2x_1 & -2 & 0 & \cdots & 0 \\ -2x_2 & 0 & -2 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ -2x_n & 0 & 0 & \cdots & -2 \end{array} \right| \\ &= (-2)^{n-1} \left( 1 - \frac{1}{2} \sum_{k = 1}^n x_k^2 \right) \end{align*} Dn= 10000x1x12−2x2x1⋮xnx1x2x1x2x22−2⋮xnx2⋯⋯⋯⋱⋯xnx1xnx2xn⋮xn2−2 = 1−x1−x2⋮−xnx1−20⋮0x20−2⋮0⋯⋯⋯⋱⋯xn00⋮−2 =21 2−2x1−2x2⋮−2xnx1−20⋮0x20−2⋮0⋯⋯⋯⋱⋯xn00⋮−2 =(−2)n−1(1−21k=1∑nxk2)
-
设 α i = ( a i 1 , a i 2 , ⋯ , a i n ) \alpha_i = (a_{i1}, a_{i2}, \cdots, a_{in}) αi=(ai1,ai2,⋯,ain), i = 1 , 2 , ⋯ , s i = 1, 2, \cdots, s i=1,2,⋯,s,且方程组的解满足:
{ a 11 x 1 + a 12 x 2 + ⋯ + a 1 n x n = 0 a 21 x 1 + a 22 x 2 + ⋯ + a 2 n x n = 0 ⋮ a s 1 x 1 + a s 2 x 2 + ⋯ + a s n x n = 0 \begin{cases} a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n = 0 \\ a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n = 0 \\ \vdots \\ a_{s1}x_1 + a_{s2}x_2 + \cdots + a_{sn}x_n = 0 \end{cases} ⎩ ⎨ ⎧a11x1+a12x2+⋯+a1nxn=0a21x1+a22x2+⋯+a2nxn=0⋮as1x1+as2x2+⋯+asnxn=0
假设解还满足 b 1 x 1 + b 2 x 2 + ⋯ + b n x n = 0 b_1x_1 + b_2x_2 + \cdots + b_nx_n = 0 b1x1+b2x2+⋯+bnxn=0,记 β = ( b 1 , b 2 , ⋯ , b n ) \beta = (b_1, b_2, \cdots, b_n) β=(b1,b2,⋯,bn),证明: β \beta β 可由 α 1 , α 2 , ⋯ , α s \alpha_1, \alpha_2, \cdots, \alpha_s α1,α2,⋯,αs 线性表示。
系数矩阵为:
A = [ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋱ ⋮ a s 1 a s 2 ⋯ a s n ] , x = [ x 1 x 2 ⋮ x n ] A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{s1} & a_{s2} & \cdots & a_{sn} \end{bmatrix}, \quad x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} A= a11a21⋮as1a12a22⋮as2⋯⋯⋱⋯a1na2n⋮asn ,x= x1x2⋮xn
方程组表示为:
A x = 0 Ax = 0 Ax=0
另定义扩展矩阵 B B B:
B = [ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋱ ⋮ a s 1 a s 2 ⋯ a s n b 1 b 2 ⋯ b n ] B = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{s1} & a_{s2} & \cdots & a_{sn} \\ b_1 & b_2 & \cdots & b_n \end{bmatrix} B= a11a21⋮as1b1a12a22⋮as2b2⋯⋯⋱⋯⋯a1na2n⋮asnbn
同样有 B x = 0 Bx = 0 Bx=0。
因为两个线性方程组同解,所以行向量组等价,即 r ( A ) = r ( B ) r(A) = r(B) r(A)=r(B)。这表示 { α 1 , α 2 , ⋯ , α s } \{\alpha_1, \alpha_2, \cdots, \alpha_s\} {α1,α2,⋯,αs} 与 { α 1 , α 2 , ⋯ , α s , β } \{\alpha_1, \alpha_2, \cdots, \alpha_s, \beta\} {α1,α2,⋯,αs,β} 的秩相等。因此, β \beta β 可以由 { α 1 , α 2 , ⋯ , α s } \{\alpha_1, \alpha_2, \cdots, \alpha_s\} {α1,α2,⋯,αs} 的线性组合表示。
-
已知 A = ( a i j ) n × n A=\begin{pmatrix}a_{ij}\end{pmatrix}_{n \times n} A=(aij)n×n 是 n n n 级正定矩阵,证明:
- a i i > 0 ( i = 1 , 2 , ⋯ , n ) a_{ii} > 0 \ (i=1,2,\cdots,n) aii>0 (i=1,2,⋯,n)
- 2 ∣ a i j ∣ < a i i + a j j ( i ≠ j ) 2 |a_{ij}| < a_{ii} + a_{jj} \ (i \neq j) 2∣aij∣<aii+ajj (i=j)
- A A A 的所有元素中绝对值最大的元素一定在主对角线上
证明 1:
记 A A A 为正定矩阵,因此存在一个 n n n 级实可逆矩阵 C C C,使得 A = C T C A = C^T C A=CTC,其中 c k i ( k = 1 , 2 , ⋯ , n ) c_{ki} \ (k=1,2,\cdots,n) cki (k=1,2,⋯,n) 不全为 0。
a i i = c i T c i = ∑ k = 1 n c k i 2 > 0 a_{ii} = c_i^T c_i = \sum_{k = 1}^n c_{ki}^2 > 0 aii=ciTci=k=1∑ncki2>0
证明 2:
c k i ( k = 1 , 2 , ⋯ , n ) c_{ki} \ (k=1,2,\cdots,n) cki (k=1,2,⋯,n) 和 c k j ( k = 1 , 2 , ⋯ , n ) c_{kj} \ (k=1,2,\cdots,n) ckj (k=1,2,⋯,n) 不全为 0,因此:
a i i − 2 ∣ a i j ∣ + a j j = c i T c i − 2 ∣ c i T c j ∣ + c j T c j = ∑ k = 1 n c k i 2 − 2 ∑ k = 1 n ∣ c k i c k j ∣ + ∑ k = 1 n c k j 2 = ∑ k = 1 n ( c k i 2 − 2 ∣ c k i c k j ∣ + c k j 2 ) = ∑ k = 1 n ( ∣ c k i ∣ − ∣ c k j ∣ ) 2 > 0 \begin{align*} a_{ii} - 2 |a_{ij}| + a_{jj} &= c_i^T c_i - 2 |c_i^T c_j| + c_j^T c_j \\ &= \sum_{k = 1}^n c_{ki}^2 - 2 \sum_{k = 1}^n |c_{ki} c_{kj}| + \sum_{k = 1}^n c_{kj}^2 \\ &= \sum_{k = 1}^n \left(c_{ki}^2 - 2 |c_{ki} c_{kj}| + c_{kj}^2\right) \\ &= \sum_{k = 1}^n \left(|c_{ki}| - |c_{kj}|\right)^2 \\ &> 0 \end{align*} aii−2∣aij∣+ajj=ciTci−2∣ciTcj∣+cjTcj=k=1∑ncki2−2k=1∑n∣ckickj∣+k=1∑nckj2=k=1∑n(cki2−2∣ckickj∣+ckj2)=k=1∑n(∣cki∣−∣ckj∣)2>0
因此, 2 ∣ a i j ∣ < a i i + a j j 2 |a_{ij}| < a_{ii} + a_{jj} 2∣aij∣<aii+ajj。
证明 3:
对任意 i ∈ { 1 , 2 , ⋯ , n } i \in \{1,2,\cdots,n\} i∈{1,2,⋯,n}, j ∈ { 1 , 2 , ⋯ , n } j \in \{1,2,\cdots,n\} j∈{1,2,⋯,n},且 i ≠ j i \neq j i=j,假设 a i i > a j j a_{ii} > a_{jj} aii>ajj,则有:
2 ∣ a i j ∣ < a i i + a j j < 2 a i i 2 |a_{ij}| < a_{ii} + a_{jj} < 2 a_{ii} 2∣aij∣<aii+ajj<2aii
因此, ∣ a i j ∣ < ∣ a i i ∣ |a_{ij}| < |a_{ii}| ∣aij∣<∣aii∣。由于 A A A 是正定矩阵,所以 a i j = a j i a_{ij} = a_{ji} aij=aji,即 ∣ a j i ∣ < ∣ a i i ∣ |a_{ji}| < |a_{ii}| ∣aji∣<∣aii∣。因此,对角线上元素的绝对值最大。
-
若 A A A 是 n n n 阶方阵,证明:
- A n = 0 A^n = 0 An=0 当且仅当 A A A 的特征值全为 0;
- A n = 0 A^n = 0 An=0,则 ∣ A + E ∣ = 1 |A + E| = 1 ∣A+E∣=1。
证明 1:
⇒ \Rightarrow ⇒
A A A 是数域 F F F 上的 n n n 级幂零矩阵,设幂零指数为 l l l,那么 A A A 的最小多项式是 λ l \lambda^l λl。
A A A 的最小多项式与 A A A 的特征多项式 f ( λ ) f(\lambda) f(λ) 在包含 F F F 的代数封闭域中有相同的根,因此 f ( λ ) = λ n f(\lambda) = \lambda^n f(λ)=λn。因此, A A A 的 n n n 个特征值均为 0。
⇐ \Leftarrow ⇐
若 A A A 的特征值为 0(重数 n n n),则 A A A 的特征多项式 f ( λ ) = λ n f(\lambda) = \lambda^n f(λ)=λn,所以 A n = f ( A ) = 0 A^n = f(A) = 0 An=f(A)=0。因此, A A A 是幂零矩阵。
证明 2:
由于 A A A 的特征值全为 0,所以 A + E A + E A+E 的特征值全为 1。因此 ∣ A + E ∣ = 1 |A + E| = 1 ∣A+E∣=1。
-
设 A = ( a i j ) n × n A = (a_{ij})_{n \times n} A=(aij)n×n 是一个 n ≥ 2 n \geq 2 n≥2 的矩阵, A ∗ A^{*} A∗ 为 A A A 的伴随矩阵,证明: ( A ∗ ) ∗ = ∣ A ∣ n − 2 A (A^{*})^{*} = |A|^{n-2} A (A∗)∗=∣A∣n−2A。
方法 1:
如果 A A A 可逆,则 A ∗ A = ∣ A ∣ E A^* A = |A| E A∗A=∣A∣E,因此 A ∗ = ∣ A ∣ A − 1 A^* = |A| A^{-1} A∗=∣A∣A−1。
( A ∗ A ) ∗ = A ∗ ( A ∗ ) ∗ = ∣ A ∗ ∣ E = ∣ A ∣ n − 1 E (A^* A)^* = A^* (A^*)^* = |A^*| E = |A|^{n-1} E (A∗A)∗=A∗(A∗)∗=∣A∗∣E=∣A∣n−1E
解得 ( A ∗ ) ∗ = ∣ A ∣ n − 2 A (A^*)^* = |A|^{n-2} A (A∗)∗=∣A∣n−2A。
如果 A A A 不可逆,即 ∣ A ∣ = 0 |A| = 0 ∣A∣=0,则存在可逆矩阵 P P P 和 Q Q Q,使得 P A Q = Λ = [ E r 0 0 0 ] PAQ = \Lambda = \begin{bmatrix} E_r & 0 \\ 0 & 0 \end{bmatrix} PAQ=Λ=[Er000],其中 r < n r < n r<n。
因此 Λ ∗ ∗ = 0 \Lambda^{**} = 0 Λ∗∗=0,从而 ( P A Q ) ∗ ∗ = P ∗ ∗ A ∗ ∗ Q ∗ ∗ (PAQ)^{**} = P^{**} A^{**} Q^{**} (PAQ)∗∗=P∗∗A∗∗Q∗∗,因为 P ∗ ∗ P^{**} P∗∗ 和 Q ∗ ∗ Q^{**} Q∗∗ 是可逆矩阵,所以 A ∗ ∗ = 0 = ∣ A ∣ n − 2 A A^{**} = 0 = |A|^{n-2} A A∗∗=0=∣A∣n−2A。
方法 2:
对于一般方阵 A A A,可取一列有理数 t k → 0 t_k \to 0 tk→0,使得 t k E + A t_k E + A tkE+A 为非奇异矩阵:
( ( t k E + A ) ∗ ) ∗ = ∣ t k E + A ∣ n − 2 ( t k E + A ) ((t_k E + A)^*)^* = |t_k E + A|^{n-2} (t_k E + A) ((tkE+A)∗)∗=∣tkE+A∣n−2(tkE+A)
注意到上式两边均为 n n n 阶方阵,其元素都是 t k t_k tk 的多项式,因此关于 t k t_k tk 连续。令 t k → 0 t_k \to 0 tk→0,即可得到结论。
-
设二次型 f ( x 1 , x 2 , x 3 ) = 2 x 1 2 + x 2 2 + x 3 2 + 2 x 1 x 2 + t x 2 x 3 f(x_1, x_2, x_3) = 2x_1^2 + x_2^2 + x_3^2 + 2x_1 x_2 + t x_2 x_3 f(x1,x2,x3)=2x12+x22+x32+2x1x2+tx2x3,回答:
- 当 t t t 为何值时,二次型 f ( x 1 , x 2 , x 3 ) f(x_1, x_2, x_3) f(x1,x2,x3) 正定?
- 当 t = 1 t=1 t=1 时,求二次型 f ( x 1 , x 2 , x 3 ) f(x_1, x_2, x_3) f(x1,x2,x3) 对应矩阵 A A A 的最小多项式 m A ( λ ) m_A(\lambda) mA(λ)。
解答 1:
对应的二次型矩阵为:
A = [ 2 1 0 1 1 t 2 0 t 2 1 ] A = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 1 & \frac{t}{2} \\ 0 & \frac{t}{2} & 1 \end{bmatrix} A= 210112t02t1
A 的顺序主子式为:
H 1 = 2 , H 2 = 1 , H 3 = 2 ( 1 − t 2 4 ) − 1 = 1 − t 2 2 H_1 = 2, \quad H_2 = 1, \quad H_3 = 2 \left( 1 - \frac{t^2}{4} \right) - 1 = 1 - \frac{t^2}{2} H1=2,H2=1,H3=2(1−4t2)−1=1−2t2
因此,为了使 A A A 正定,需满足 t ∈ ( − 2 , 2 ) t \in (-\sqrt{2}, \sqrt{2}) t∈(−2,2)。
解答 2:
当 t = 1 t = 1 t=1 时,对应的矩阵为:
A = [ 2 1 0 1 1 1 2 0 1 2 1 ] A = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 1 & \frac{1}{2} \\ 0 & \frac{1}{2} & 1 \end{bmatrix} A= 21011210211
计算 λ E − A \lambda E - A λE−A:
λ E − A = [ λ − 2 − 1 0 − 1 λ − 1 − 1 2 0 − 1 2 λ − 1 ] \lambda E - A = \begin{bmatrix} \lambda - 2 & -1 & 0 \\ -1 & \lambda - 1 & -\frac{1}{2} \\ 0 & -\frac{1}{2} & \lambda - 1 \end{bmatrix} λE−A= λ−2−10−1λ−1−210−21λ−1
计算 d 3 ( λ ) d_3(\lambda) d3(λ) 得:
d 3 ( λ ) = ∣ λ E − A ∣ = ( λ − 2 ) [ ( λ − 1 ) 2 − 1 4 ] + ( 1 − λ ) = ( λ − 2 ) [ λ 2 − 2 λ + 3 4 ] + ( 1 − λ ) = λ 3 − 4 λ 2 + 15 4 λ − 1 2 \begin{align*} d_3(\lambda) &= |\lambda E - A| \\ &= (\lambda - 2) \left [ (\lambda - 1)^2 - \frac{1}{4} \right] + (1 - \lambda) \\ &= (\lambda - 2) \left [ \lambda^2 - 2\lambda + \frac{3}{4} \right] + (1 - \lambda) \\ &= \lambda^3 - 4\lambda^2 + \frac{15}{4}\lambda - \frac{1}{2} \end{align*} d3(λ)=∣λE−A∣=(λ−2)[(λ−1)2−41]+(1−λ)=(λ−2)[λ2−2λ+43]+(1−λ)=λ3−4λ2+415λ−21
因此,最小多项式 m A ( λ ) m_A(\lambda) mA(λ) 为 λ 3 − 4 λ 2 + 15 4 λ − 1 2 \lambda^3 - 4\lambda^2 + \frac{15}{4}\lambda - \frac{1}{2} λ3−4λ2+415λ−21。
-
已知 A = ( 3 2 − 1 2 1 2 1 2 ) A = \begin{pmatrix} \frac{3}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix} A=(2321−2121),求 A 100 A^{100} A100。
A = [ 3 2 − 1 2 1 2 1 2 ] = E + [ 1 2 − 1 2 1 2 − 1 2 ] = E + [ 1 2 1 2 ] [ 1 − 1 ] = E + α β T \begin{align*} A &= \begin{bmatrix} \frac{3}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} \\ &= E + \begin{bmatrix} \frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} \end{bmatrix} \\ &= E + \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} \begin{bmatrix} 1 & -1 \end{bmatrix} \\ &= E + \alpha \beta^T \end{align*} A=[2321−2121]=E+[2121−21−21]=E+[2121][1−1]=E+αβT
由于 β T α = 0 \beta^T \alpha = 0 βTα=0,所以 ( α β T ) 2 = 0 (\alpha \beta^T)^2 = 0 (αβT)2=0,因此:
A 100 = ( E + α β T ) 100 = ∑ k = 0 100 C 100 k ( α β T ) k = E + 100 α β T = [ 51 − 50 50 − 49 ] \begin{align*} A^{100} &= \left(E + \alpha \beta^T\right)^{100} \\ &= \sum_{k = 0}^{100} C_{100}^k \left(\alpha \beta^T\right)^k \\ &= E + 100 \alpha \beta^T \\ &= \begin{bmatrix} 51 & -50 \\ 50 & -49 \end{bmatrix} \end{align*} A100=(E+αβT)100=k=0∑100C100k(αβT)k=E+100αβT=[5150−50−49]
-
设矩阵 A A A 的特征多项式 f ( λ ) = ( λ + 1 ) 3 ( λ − 2 ) 2 ( λ + 3 ) f(\lambda) = (\lambda + 1)^3(\lambda - 2)^2(\lambda + 3) f(λ)=(λ+1)3(λ−2)2(λ+3),最小多项式 m ( λ ) = ( λ + 1 ) 2 ( λ − 2 ) ( λ + 3 ) m(\lambda) = (\lambda + 1)^2(\lambda - 2)(\lambda + 3) m(λ)=(λ+1)2(λ−2)(λ+3),求:
- A A A 的所有不变因子。
- A A A 的若尔当标准型。
解答 1:
f ( λ ) f(\lambda) f(λ) 的次数为 6,说明 A A A 是一个 6 阶矩阵。最小多项式 m ( λ ) = ( λ + 1 ) 2 ( λ − 2 ) ( λ + 3 ) m(\lambda) = (\lambda + 1)^2(\lambda - 2)(\lambda + 3) m(λ)=(λ+1)2(λ−2)(λ+3),因此:
- d 6 ( λ ) = m ( λ ) = ( λ + 1 ) 2 ( λ − 2 ) ( λ + 3 ) d_6(\lambda) = m(\lambda) = (\lambda + 1)^2(\lambda - 2)(\lambda + 3) d6(λ)=m(λ)=(λ+1)2(λ−2)(λ+3)
- d 5 ( λ ) = ( λ + 1 ) ( λ − 2 ) d_5(\lambda) = (\lambda + 1)(\lambda - 2) d5(λ)=(λ+1)(λ−2)
- d 4 ( λ ) = 1 d_4(\lambda) = 1 d4(λ)=1
- d 3 ( λ ) = 1 d_3(\lambda) = 1 d3(λ)=1
- d 2 ( λ ) = 1 d_2(\lambda) = 1 d2(λ)=1
- d 1 ( λ ) = 1 d_1(\lambda) = 1 d1(λ)=1
所以, A A A 的所有不变因子为 ( λ + 1 ) , ( λ + 1 ) 2 , ( λ − 2 ) , ( λ − 2 ) , ( λ + 3 ) (\lambda + 1), (\lambda + 1)^2, (\lambda - 2), (\lambda - 2), (\lambda + 3) (λ+1),(λ+1)2,(λ−2),(λ−2),(λ+3)。
解答 2:
初等因子为 ( λ + 1 ) , ( λ + 1 ) 2 , ( λ − 2 ) , ( λ − 2 ) , ( λ + 3 ) (\lambda + 1), (\lambda + 1)^2, (\lambda - 2), (\lambda - 2), (\lambda + 3) (λ+1),(λ+1)2,(λ−2),(λ−2),(λ+3)。根据这些初等因子,可以构建 A A A 的若尔当标准型:
J = [ − 1 − 1 1 − 1 2 2 − 3 ] J = \begin{bmatrix} -1 & & & & & \\ & -1 & & & & \\ & 1 & -1 & & & \\ & & & 2 & & \\ & & & & 2 & \\ & & & & & -3 \end{bmatrix} J= −1−11−122−3
-
设 A A A 为 n n n 阶非零实矩阵, n ≥ 3 n \geq 3 n≥3,且 A T = A ∗ A^T = A^* AT=A∗。证明:
- ∣ A ∣ > 0 |A| > 0 ∣A∣>0。
- A A A 为正交矩阵。
解答 1:
由于 A T = A ∗ A^T = A^* AT=A∗,表示 A A A 为对称矩阵。因此有:
A A ∗ = A ∗ A = ∣ A ∣ E AA^* = A^* A = |A| E AA∗=A∗A=∣A∣E
因为 A T = A ∗ A^T = A^* AT=A∗,则有 A T A = ∣ A ∣ E A^T A = |A| E ATA=∣A∣E。记 B = A T A B = A^T A B=ATA, B B B 为对角矩阵,对于任意 i = 1 , 2 , ⋯ , n i = 1, 2, \cdots, n i=1,2,⋯,n 有:
b i i = ∣ A ∣ b_{ii} = |A| bii=∣A∣
进一步展开:
b i i = α i T α i = ∑ k = 1 n a k i 2 \begin{align*} b_{ii} &= \alpha_i^T \alpha_i \\ &= \sum_{k = 1}^n a_{ki}^2 \end{align*} bii=αiTαi=k=1∑naki2
由于 A A A 是非零实矩阵,故存在非零元,不妨假设为 a i j a_{ij} aij,因此 b j j = b i i = ∣ A ∣ > 0 b_{jj} = b_{ii} = |A| > 0 bjj=bii=∣A∣>0。
解答 2:
由 1 知, ∣ A ∣ > 0 |A| > 0 ∣A∣>0,说明 A A A 是可逆矩阵:
∣ A A T ∣ = ∣ A ∣ 2 = ∣ A A ∗ ∣ = ∣ ( ∣ A ∣ E ) ∣ = ∣ A ∣ n |AA^T| = |A|^2 = |AA^*| = |(|A| E)| = |A|^n ∣AAT∣=∣A∣2=∣AA∗∣=∣(∣A∣E)∣=∣A∣n
因此:
∣ A ∣ n − 2 = 1 |A|^{n-2} = 1 ∣A∣n−2=1
解得 ∣ A ∣ = 1 |A| = 1 ∣A∣=1,所以:
A A T = A A ∗ = ∣ A ∣ E AA^T = AA^* = |A| E AAT=AA∗=∣A∣E
这意味着 A T A = E A^T A = E ATA=E,即 A A A 为正交矩阵。
2024高等代数【南昌大学】
最新推荐文章于 2025-05-20 18:29:09 发布