文章目录
第五节 极限运算法则
定理1 两个无穷小的和是无穷小.
定理2 有界函数与无穷小的乘积是无穷小.
推论1 常数与无穷小的乘积是无穷小.
推论2 有限个无穷小的乘积是无穷小.
定理3 如果
lim
f
(
x
)
=
A
,
lim
g
(
x
)
=
B
\lim f(x)=A,\lim g(x)=B
limf(x)=A,limg(x)=B,那么
(1)
lim
[
f
(
x
)
±
g
(
x
)
]
=
lim
f
(
x
)
±
lim
g
(
x
)
=
A
±
B
\lim [f(x)\pm g(x)]=\lim f(x)\pm\lim g(x)=A\pm B
lim[f(x)±g(x)]=limf(x)±limg(x)=A±B;
(2)
lim
[
f
(
x
)
⋅
g
(
x
)
]
=
lim
f
(
x
)
⋅
lim
g
(
x
)
=
A
⋅
B
\lim [f(x)\cdot g(x)]=\lim f(x)\cdot\lim g(x)=A\cdot B
lim[f(x)⋅g(x)]=limf(x)⋅limg(x)=A⋅B;
(3) 若又有
B
≠
0
B\ne0
B=0,则
lim
f
(
x
)
g
(
x
)
=
lim
f
(
x
)
lim
g
(
x
)
=
A
B
.
\lim \frac{f(x)}{g(x)}=\frac{\lim f(x)}{\lim g(x)}=\frac{A}{B}.
limg(x)f(x)=limg(x)limf(x)=BA.推论1 如果
lim
f
(
x
)
\lim f(x)
limf(x) 存在,而
c
c
c 为常数,那么
lim
[
c
f
(
x
)
]
=
c
lim
f
(
x
)
.
\lim [cf(x)]=c\lim f(x).
lim[cf(x)]=climf(x).推论2 如果
lim
f
(
x
)
\lim f(x)
limf(x) 存在,而
n
n
n 是正整数,那么
lim
[
f
(
x
)
]
n
=
[
lim
f
(
x
)
]
n
\lim [f(x)]^n=[\lim f(x)]^n
lim[f(x)]n=[limf(x)]n
定理4 设有数列 { x n } \{x_n\} {xn} 和 { y n } \{y_n\} {yn}.如果 lim n → ∞ x n = A , lim n → ∞ y n = B , \displaystyle\lim_{n\to \infty}x_n=A, \quad \displaystyle\lim_{n\to \infty}y_n=B, n→∞limxn=A,n→∞limyn=B,那么
( 1 ) lim n → ∞ ( x n ± y n ) = A ± B ; \quad (1) \displaystyle\lim_{n\to \infty}(x_n\pm y_n)=A\pm B; (1)n→∞lim(xn±yn)=A±B;
( 2 ) lim n → ∞ ( x n ⋅ y n ) = A ⋅ B ; \quad (2) \displaystyle\lim_{n\to \infty}(x_n\cdot y_n)=A\cdot B; (2)n→∞lim(xn⋅yn)=A⋅B;
( 3 ) \quad (3) (3) 当 y n ≠ 0 ( n = 1 , 2 , ⋯ ) y_n\ne0 (n=1,2,\cdots) yn=0(n=1,2,⋯) 且 B ≠ 0 B\ne0 B=0 时, lim n → ∞ x n y n = A B \displaystyle\lim_{n\to \infty}\frac{x_n}{y_n}=\frac{A}{B} n→∞limynxn=BA.
定理5 如果 φ ( x ) ≥ ψ ( x ) \varphi(x)\ge\psi(x) φ(x)≥ψ(x),而 lim φ ( x ) = A , lim ψ ( x ) = B \lim \varphi(x)=A,\lim \psi(x)=B limφ(x)=A,limψ(x)=B,那么 A ≥ B . A\ge B. A≥B.
定理6(复合函数的极限运算法则)——设函数 y = f [ g ( x ) ] y=f[g(x)] y=f[g(x)] 是由函数 u = g ( x ) u=g(x) u=g(x) 与函数 y = f ( u ) y=f(u) y=f(u) 复合而成, f [ g ( x ) ] f[g(x)] f[g(x)] 在点 x 0 x_0 x0 的某去心邻域内有定义,若 lim x → x 0 g ( x ) = u 0 , lim u → u 0 f ( u ) = A \displaystyle\lim_{x\to x_0}g(x)=u_0,\displaystyle\lim_{u\to u_0}f(u)=A x→x0limg(x)=u0,u→u0limf(u)=A, 且存在 δ 0 > 0 , \delta_0\gt 0, δ0>0, 当 x ∈ U ˚ ( x 0 , δ 0 ) x\in \mathring{U}(x_0,\delta_0) x∈U˚(x0,δ0) 时,有 g ( x ) ≠ u 0 , g(x)\ne u_0, g(x)=u0, 则 lim x → x 0 f [ g ( x ) ] = lim u → u 0 f ( u ) = A . \displaystyle\lim_{x\to x_0}f[g(x)]=\displaystyle\lim_{u\to u_0}f(u)=A. x→x0limf[g(x)]=u→u0limf(u)=A.