bzoj 2115: [Wc2011] Xor

Description

Input

第一行包含两个整数N和 M, 表示该无向图中点的数目与边的数目。 接下来M 行描述 M 条边,每行三个整数Si,Ti ,Di,表示 Si 与Ti之间存在 一条权值为 Di的无向边。 图中可能有重边或自环。

Output

仅包含一个整数,表示最大的XOR和(十进制结果),注意输出后加换行回车。

Sample Input

5 7
1 2 2
1 3 2
2 4 1
2 5 1
4 5 3
5 3 4
4 3 2

Sample Output

6

HINT


对于一个环,我们可以从1走到环上,走一圈再原路返回1
这样我们可以只把环的值加到答案里面
那么问题就转换成了,1到n的一条路径和环的值异或求最大值
首先我们先证明任意一条1到n的路径都可以求出最优解
假设当前为路径S1,更优解为路径S2
因为S1和S2不是同一条路径,所以S1与S2一定会形成若干个环
那么S1通过与这些环异或就可以转变成路径S2
因此任取一条路径肯定能够得出最优解
然后环的值该如何求
我们考虑通过dfs求出返祖边,这样能求出一些环,而所有环一定都是这些环的异或组合起来
然后对于如何求出这个最大值,我们考虑构造出我们得到那些环价值的线性基
一开始ans取1到n的路径值,然后对于线性基贪心一下就可以了 

#include<map>
#include<queue>
#include<vector>
#include<cstdio>
#include<string>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
struct line
{
	int s,t;
	long long x;
	int next;
}a[200001];
int head[100001];
int edge;
inline void add(int s,int t,long long x)
{
	a[edge].next=head[s];
	head[s]=edge;
	a[edge].s=s;
	a[edge].t=t;
	a[edge].x=x;
}
int n,cnt,tot;
long long s[1000001];
bool v[100001];
long long dis[100001];
inline void dfs(int d)
{
	v[d]=true;
	int i;
	for(i=head[d];i!=0;i=a[i].next)
	{
		int t=a[i].t;
		if(!v[t])
		{
			dis[t]=(dis[d]^a[i].x);
			dfs(t);
		}
		else
		{
			tot++;
			s[tot]=(dis[d]^a[i].x^dis[t]);
		}
	}
}
//long long a[10001];
long long p[64],d[64];
inline void guass()
{
	memset(d,0,sizeof(d));
	int i,j;
	for(i=1;i<=tot;i++)
	{
		for(j=63;j>=0;j--)
		{
			if((s[i]>>j)&1)
			{
				if(d[j])
					s[i]^=d[j];
				else
				{
					d[j]=s[i];
					break;
				}
			}
		}
	}
}
inline void rebuild()
{
	cnt=0;
	int i,j;
	for(i=63;i>=0;i--)
	{
		for(j=i-1;j>=0;j--)
		{
			if((d[i]>>j)&1)
				d[i]^=d[j];
		}
	}
	for(i=0;i<63;i++)
		if(d[i])
			p[cnt++]=d[i];
}
int main()
{
	int m;
	scanf("%d%d",&n,&m);
	int i;
	int s,t;
	long long x;
	for(i=1;i<=m;i++)
	{
		scanf("%d%d%lld",&s,&t,&x);
		edge++;
		add(s,t,x);
		edge++;
		add(t,s,x);
	}
	dfs(1);
	guass();
	rebuild();
	long long ans=dis[n];
	for(i=63;i>=0;i--)
		if((ans^p[i])>ans)
			ans=(ans^p[i]);
	printf("%lld\n",ans);
	return 0;
}


内容概要:该论文聚焦于6G通信中20-100GHz频段的电磁场(EMF)暴露评估问题,提出了一种基于自适应可重构架构神经网络(RAWA-NN)的预测框架。该框架通过集成权重分析模块和优化模块,能够自动优化网络超参数,显著减少训练时间。模型使用70%的前臂数据进行训练,其余数据用于测试,并用腹部和股四头肌数据验证模型泛化能力。结果显示,该模型在不同参数下的相对差异(RD)在前臂低于2.6%,其他身体部位低于9.5%,可有效预测皮肤表面的温升和吸收功率密度(APD)。此外,论文还提供了详细的代码实现,涵盖数据预处理、权重分析模块、自适应优化模块、RAWA-NN模型构建及训练评估等内容。 适合人群:从事电磁兼容性研究、6G通信技术研发以及对神经网络优化感兴趣的科研人员和工程师。 使用场景及目标:①研究6G通信中高频段电磁暴露对人体的影响;②开发更高效的电磁暴露评估工具;③优化神经网络架构以提高模型训练效率和预测精度。 其他说明:论文不仅提出了理论框架,还提供了完整的代码实现,方便读者复现实验结果。此外,论文还讨论了未来的研究方向,包括扩展到更高频段(如300GHz)的数据处理、引入强化学习优化超参数、以及实现多物理场耦合的智能电磁暴露评估系统。建议读者在实际应用中根据具体需求调整模型架构和参数,并结合真实数据进行验证。
内容概要:本文是北京金融科技产业联盟发布的《基于数据空间的金融数据可信流通研究报告》,探讨了金融数据可信流通的现状、挑战和发展前景。文章首先介绍了金融数据在数字化转型中的重要性及其面临的隐私保护和安全挑战。接着,文章详细阐述了数据空间的概念及其发展历程,尤其是可信数据空间(TDM)在我国的发展情况。文中还深入分析了金融数据可信流通的典型应用场景、关键技术和方案架构,如数据访问控制、数据使用控制、智能合约、数据脱敏等。最后,文章展示了多个典型场景应用案例,如中信银行总分行数据流通管控、工银金租数据流通、银联安全生物特征支付等,并总结了当前可信数据空间建设中存在的法规、技术、标准和商业模式挑战,提出了相应的政策建议。 适用人群:金融行业从业者、数据安全管理人员、政策制定者、科技研发人员等。 使用场景及目标:①理解金融数据可信流通的重要性和挑战;②学习可信数据空间的关键技术和应用场景;③探索金融数据可信流通的具体实践案例;④了解当前可信数据空间建设的瓶颈和未来发展方向。 其他说明:本文不仅提供了详尽的技术和应用分析,还提出了具体的政策建议,有助于推动金融数据可信流通的健康发展。阅读本文可以帮助读者深入了解金融数据安全保护和高效利用的最佳实践,为相关政策和技术的发展提供参考。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值