UVALive 7676 A Boring Problem

本文深入探讨了一种复杂度为O(nk)的算法实现,详细介绍了算法的推导过程及其实现代码。该算法主要用于解决特定问题,通过团队合作耗时三小时完成。文章中分享了使用C++实现的具体代码,包括多项式乘法、快速幂等关键步骤,以及如何利用动态规划优化算法效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

推

推公式辣鸡,和队友一起写了3小时= =。这张纸被用来垫烧烤盒了,最后是O(nk)的,不过网上别人的写法好像更加方便一点

#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
const int maxn=5e4+5,maxm=100+5,mod=1e9+7;
char ss[maxn];
int a[maxn],sum[maxn];
LL ans[maxn];
LL T[maxm][maxn];// k n
LL s[maxn][maxm],num[maxn][maxm],inv[maxn][maxm],C[maxm][maxm];
int n,k;

inline long long qp(long long a,long long b)
{
	long long ans=1,cnt=a;
	while(b)
	{
		if(b&1)
			ans=(ans*cnt)%mod;
		cnt=(cnt*cnt)%mod;
		b>>=1;
	}
	return ans;
}

int main() {
    C[0][0]=1;
    for(int i=1;i<maxm;++i){
        C[i][0]=1;
        for(int j=1;j<=maxm;++j)
            C[i][j]=(C[i-1][j-1]+C[i-1][j])%mod;
    }
    int _;
    scanf("%d",&_);
    while(_--)
	{
        scanf("%d%d",&n,&k);
        scanf("%s",ss+1);
        for(register int i=1;i<=n;++i)
			a[i]=ss[i]-'0';
        for(int i=1;i<=n;i++)
        {
        	sum[i]=sum[i-1]+a[i];
        	//last[i]=pre[sum[i]];
        	//pre[sum[i]]=i;
		}
		
		for(register int i=0;i<=n;++i)
		{
            s[i][0]=1;
            for(register int j=1;j<=k;++j){
				s[i][j]=1ll*s[i][j-1]*sum[i]%mod;
			}
			if(sum[i]){
				inv[i][k]=qp(s[i][k],mod-2);
        		for(int j=k-1;j>=0;j--)
        			inv[i][j]=inv[i][j+1]*sum[i]%mod;
        	}else{
        		for(int j=0;j<=k;j++)
					inv[i][j]=1;
			}
		}
		
		LL sgn=1;
		if(k&1)sgn=-1;	
		for(int i=1;i<=n;i++){
			T[0][i]=(T[0][i-1]+(1ll*mod+sgn*s[i-1][k])%mod)%mod;
		}
		
        for(int r=1;r<=k;r++)
        {
        	int last=0;
        	for(int i=1;i<=n;i++){
        			LL sgn=1;
        			if((k-r)&1)sgn=-1;
        			if(sum[i-1]==0){
        				T[r][i]=(T[r][last]+s[i][r]*(1ll*mod+sgn*s[i-1][k-r])%mod)%mod;
        				continue;
					}
					last=i;
        			T[r][i]=(T[r][i-1]*inv[i-1][r]%mod*s[i][r]%mod
							+s[i][r]*(1ll*mod+sgn*s[i-1][k-r])%mod)%mod;
				}
		}
        
        for(int i=1;i<=n;i++)
        	ans[i]=0;
        
        for(int i=1;i<=n;i++)
        	for(int r=0;r<=k;r++)
        		ans[i]=(ans[i]+C[k][r]*T[r][i])%mod;
        for(int i=1;i<=n;++i)printf("%lld%c",ans[i],i==n?'\n':' ');
    }
    return 0;
}

 

资源下载链接为: https://pan.quark.cn/s/f989b9092fc5 今天给大家分享一个关于C#自定义字符串替换方法的实例,希望能对大家有所帮助。具体介绍如下: 之前我遇到了一个算法题,题目要求将一个字符串中的某些片段替换为指定的新字符串片段。例如,对于源字符串“abcdeabcdfbcdefg”,需要将其中的“cde”替换为“12345”,最终得到的结果字符串是“ab12345abcdfb12345fg”,即从“abcdeabcdfbcdefg”变为“ab12345abcdfb12345fg”。 经过分析,我发现不能直接使用C#自带的string.Replace方法来实现这个功能。于是,我决定自定义一个方法来完成这个任务。这个方法的参数包括:原始字符串originalString、需要被替换的字符串片段strToBeReplaced以及用于替换的新字符串片段newString。 在实现过程中,我首先遍历原始字符串,查找需要被替换的字符串片段strToBeReplaced出现的位置。找到后,就将其替换为新字符串片段newString。需要注意的是,在替换过程中,要确保替换操作不会影响后续的查找和替换,避免遗漏或重复替换的情况发生。 以下是实现代码的大概逻辑: 初始化一个空的字符串result,用于存储最终替换后的结果。 使用IndexOf方法在原始字符串中查找strToBeReplaced的位置。 如果找到了,就将originalString中从开头到strToBeReplaced出现位置之前的部分,以及newString拼接到result中,然后将originalString的查找范围更新为strToBeReplaced之后的部分。 如果没有找到,就直接将剩余的originalString拼接到result中。 重复上述步骤,直到originalStr
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值