codeforces 1149E Election Promises Nim游戏

Nim游戏题目分析与策略
博客围绕一道与Nim游戏相关的题目展开分析。若没有‘任意修改相邻城市的税收’操作就是Nim游戏,解题思路是将城市分组,依据组的异或和判断胜负。若每组异或和为0则一方必败,否则必胜,还给出了第一步的策略。

题目分析

这题好喵啊。
喵啊

如果没有“任意修改相邻城市的税收”这个操作,就是个美滋滋的Nim游戏。

接下来的思路就很巧妙了,将城市分组。所有出度为0的点为第0组,其他点为第mex(其可达节点的组编号)组。

这个有两个性质:

  1. 同一组不存在一对节点xxx,yyy,满足存在边(x,y)(x,y)(x,y)
  2. 对于第ttt组中的任意一个点,它可以到达第000到第ttt组,每一组中的至少一点。

若每一组的异或和都为0,则WA党必败,否则必胜。

第一步的策略就是,找到编号最大的,异或和不为0的组,找到其中一个可以通过减少税收使得改组异或和变为0的点,通过在这个点上拉票,修改其相邻城市的税收,使得每一组的异或和都变为0。

代码

#include<bits/stdc++.h>
using namespace std;
#define RI register int
int read() {
	int q=0;char ch=' ';
	while(ch<'0'||ch>'9') ch=getchar();
	while(ch>='0'&&ch<='9') q=q*10+ch-'0',ch=getchar();
	return q;
}
const int N=200005;
int n,m,tot,cnt;
int h[N],ne[N],to[N],w[N],du[N],stk[N],seq[N],id[N],vis[N],sg[N];

void add(int x,int y) {to[++tot]=y,ne[tot]=h[x],h[x]=tot;}
void toposort() {
	int top=0,js=0;
	for(RI i=1;i<=n;++i) if(!du[i]) stk[++top]=i;
	while(top) {
		int x=stk[top];--top,seq[++js]=x;
		for(RI i=h[x];i;i=ne[i]) {
			--du[to[i]];
			if(!du[to[i]]) stk[++top]=to[i];
		}
	}
	for(RI i=n;i>=1;--i) {
		int x=seq[i];
		for(RI j=h[x];j;j=ne[j]) ++vis[id[to[j]]];
		while(vis[id[x]]) ++id[x];
		if(id[x]>cnt) cnt=id[x];
		for(RI j=h[x];j;j=ne[j]) --vis[id[to[j]]];
	}
}

int main()
{
	int x,y;
	n=read(),m=read();
	for(RI i=1;i<=n;++i) w[i]=read();
	for(RI i=1;i<=m;++i) x=read(),y=read(),add(x,y),++du[y];
	toposort();
	for(RI i=1;i<=n;++i) sg[id[i]]^=w[i];
	int flag=-1;
	for(RI i=0;i<=cnt;++i) if(sg[i]) flag=i;
	if(flag==-1) {puts("LOSE");return 0;}
	puts("WIN");
	for(RI i=1;i<=n;++i) if(id[i]==flag) {
		if((sg[id[i]]^w[i])>w[i]) continue;
		w[i]^=sg[id[i]],sg[id[i]]=0;
		for(RI j=h[i];j;j=ne[j])
			w[to[j]]^=sg[id[to[j]]],sg[id[to[j]]]=0;
	}
	for(RI i=1;i<=n;++i) printf("%d ",w[i]);
	puts("");
	return 0;
}
### Codeforces 887E Problem Solution and Discussion The problem **887E - The Great Game** on Codeforces involves a strategic game between two players who take turns to perform operations under specific rules. To tackle this challenge effectively, understanding both dynamic programming (DP) techniques and bitwise manipulation is crucial. #### Dynamic Programming Approach One effective method to approach this problem utilizes DP with memoization. By defining `dp[i][j]` as the optimal result when starting from state `(i,j)` where `i` represents current position and `j` indicates some status flag related to previous moves: ```cpp #include <bits/stdc++.h> using namespace std; const int MAXN = ...; // Define based on constraints int dp[MAXN][2]; // Function to calculate minimum steps using top-down DP int minSteps(int pos, bool prevMoveType) { if (pos >= N) return 0; if (dp[pos][prevMoveType] != -1) return dp[pos][prevMoveType]; int res = INT_MAX; // Try all possible next positions and update 'res' for (...) { /* Logic here */ } dp[pos][prevMoveType] = res; return res; } ``` This code snippet outlines how one might structure a solution involving recursive calls combined with caching results through an array named `dp`. #### Bitwise Operations Insight Another critical aspect lies within efficiently handling large integers via bitwise operators instead of arithmetic ones whenever applicable. This optimization can significantly reduce computation time especially given tight limits often found in competitive coding challenges like those hosted by platforms such as Codeforces[^1]. For detailed discussions about similar problems or more insights into solving strategies specifically tailored towards contest preparation, visiting forums dedicated to algorithmic contests would be beneficial. Websites associated directly with Codeforces offer rich resources including editorials written after each round which provide comprehensive explanations alongside alternative approaches taken by successful contestants during live events. --related questions-- 1. What are common pitfalls encountered while implementing dynamic programming solutions? 2. How does bit manipulation improve performance in algorithms dealing with integer values? 3. Can you recommend any online communities focused on discussing competitive programming tactics? 4. Are there particular patterns that frequently appear across different levels of difficulty within Codeforces contests?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值