轻量级OLAP(二):Hive + Elasticsearch

本文介绍了如何利用Hive和Elasticsearch进行轻量级OLAP分析,解决复杂数据类型支持问题。通过Hive向Elasticsearch写入数据,避免了使用Kylin时的数据结构限制,同时利用Elasticsearch的查询性能进行多维分析。使用elasticsearch-dsl-py库简化DSL查询,实现复杂查询操作的维护。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 引言

在做OLAP数据分析时,常常会遇到过滤分析需求,比如:除去只有性别、常驻地标签的用户,计算广告媒体上的覆盖UV。OLAP解决方案Kylin不支持复杂数据类型(array、struct、map),要求数据输入Schema必须是平铺的,但是平铺后丢失了用户的聚合标签信息,而没有办法判断某一个用户是否只有性别、常驻地标签。显然,我们需要一种支持复杂数据类型的OLAP数据库;底层为Lucene的Elasticsearch正在向OLAP融合,腾讯内部已经用基于Lucene的分析数据库Hermes来做多维数据分析。

Elasticsearch(ES)在设计之初是用来做全文检索的搜索引擎,但随着倒排索引所表现出来优秀的查询性能,有越来越多人拿它

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

浅唱书令

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值