B - Math Show CodeForces - 846B

本文介绍了一个算法问题:给定n个任务,每个任务包含k个子任务及各自所需时间,目标是在限定时间内通过合理安排获得最大积分。文章通过枚举判断的方法实现这一目标。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

n个任务每个任务里有k个子任务,每个子任务完成需要a[i]个时间,完成一个子任务积一分,完成大任务多积一分。

总时间为m,求最大积分数。枚举判断即可

#include<cstdio>
#include<algorithm>
using namespace std;
int a[50];

int main(){
	int n,k,m;
	while(~scanf("%d%d%d",&n,&k,&m)){
		int sum=0;
		for(int i=0;i<k;i++){
			scanf("%d",&a[i]);
			sum+=a[i];
		}
		sort(a,a+k);
		int ans=0,res;
		for(int i=0;i<=n;i++){
			res=i*sum;
			if(res>m) break;
			int tmp=res;
			int score=i*(k+1);
			for(int j=0;j<k;j++){
				for(int t=i+1;t<=n;t++){
					tmp+=a[j];
					score++;
					if(tmp>m){
						score--;
						j=k;
						break;
					}
				}
			}
			ans=max(ans,score);
		}
		printf("%d\n",ans);
	}
	return 0;
} 

 

翻译:# CF1444A Division ## 题目描述 Oleg's favorite subjects are History and Math, and his favorite branch of mathematics is division. To improve his division skills, Oleg came up with $ t $ pairs of integers $ p_i $ and $ q_i $ and for each pair decided to find the greatest integer $ x_i $ , such that: - $ p_i $ is divisible by $ x_i $ ; - $ x_i $ is not divisible by $ q_i $ . Oleg is really good at division and managed to find all the answers quickly, how about you? ## 输入格式 The first line contains an integer $ t $ ( $ 1 \le t \le 50 $ ) — the number of pairs. Each of the following $ t $ lines contains two integers $ p_i $ and $ q_i $ ( $ 1 \le p_i \le 10^{18} $ ; $ 2 \le q_i \le 10^{9} $ ) — the $ i $ -th pair of integers. ## 输出格式 Print $ t $ integers: the $ i $ -th integer is the largest $ x_i $ such that $ p_i $ is divisible by $ x_i $ , but $ x_i $ is not divisible by $ q_i $ . One can show that there is always at least one value of $ x_i $ satisfying the divisibility conditions for the given constraints. ## 输入输出样例 #1 ### 输入 #1 ``` 3 10 4 12 6 179 822 ``` ### 输出 #1 ``` 10 4 179 ``` ## 说明/提示 For the first pair, where $ p_1 = 10 $ and $ q_1 = 4 $ , the answer is $ x_1 = 10 $ , since it is the greatest divisor of $ 10 $ and $ 10 $ is not divisible by $ 4 $ . For the second pair, where $ p_2 = 12 $ and $ q_2 = 6 $ , note that - $ 12 $ is not a valid $ x_2 $ , since $ 12 $ is divisible by $ q_2 = 6 $ ; - $ 6 $ is not valid $ x_2 $ as well: $ 6 $ is also divisible by $ q_2 = 6 $ . The next available divisor of $ p_2 = 12 $ is $ 4 $ , which is the answer, since $ 4 $ is not divisible by $ 6 $ .
最新发布
07-11
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值