Codeforces 846B Math Show

本文提供了一道编程竞赛题CF-846B的解答思路与实现代码。该题要求在限定时间内完成一系列任务以获得最大得分。文章通过枚举并排序的方法实现了最优解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目链接:CF-846B

最近可能会狂水一波ab题。
题意及简单分析:有n个任务,每个任务有k个子任务,每个子任务需要一些时间去完成。这n个任务可以看成完全相同的,每个任务的子任务的花费时间相同,只与它们的下标相关。每完成一个子任务获得一分,完成一个大任务(包含k个子任务)可以额外获得一分,求在M时间内,可以获得的最大分数。
表述比较混乱,可以去链接里看看原题的描述。
可以看到,数据范围太小了,直接枚举+暴力就可以。
枚举完成的大任务的数量,然后其余的子任务按时间从小排序,依次完成。
#define _CRT_SECURE_NO_WARNINGS
#include <iostream>
#include <cstdio>
#include <cstring>
#include <string>
#include <string.h>
#include <algorithm>

using namespace std;

int main() {
	int n, k, M;
	scanf("%d %d %d", &n, &k, &M);
	int cost[50];
	int ans = 0;
	int sum = 0;
	for (int i = 0;i < k;++i)
		scanf("%d", &cost[i]);
	for (int i = 0;i < k;++i)
		sum += cost[i];
	sort(cost, cost + k);
	for (int i = 0;i <= n;++i) //enumberate every task to be completed
	{
		int time = M;
		int cur = i*sum;
		if (cur > time)
			break;
		else
		{
			int x = i*(k + 1);
			time -= cur;
			int left = n - i;
			for(int i=0;i<k;++i)
				for (int j = 1;j <= left;++j)
				{
					if (time - cost[i] >= 0)
					{
						time -= cost[i];
						x++;
						if (i == k - 1)
							x++;
					}
				}
			ans = max(ans, x);
		}
	}
	printf("%d\n", ans);
	return 0;
}

翻译:# CF1444A Division ## 题目描述 Oleg's favorite subjects are History and Math, and his favorite branch of mathematics is division. To improve his division skills, Oleg came up with $ t $ pairs of integers $ p_i $ and $ q_i $ and for each pair decided to find the greatest integer $ x_i $ , such that: - $ p_i $ is divisible by $ x_i $ ; - $ x_i $ is not divisible by $ q_i $ . Oleg is really good at division and managed to find all the answers quickly, how about you? ## 输入格式 The first line contains an integer $ t $ ( $ 1 \le t \le 50 $ ) — the number of pairs. Each of the following $ t $ lines contains two integers $ p_i $ and $ q_i $ ( $ 1 \le p_i \le 10^{18} $ ; $ 2 \le q_i \le 10^{9} $ ) — the $ i $ -th pair of integers. ## 输出格式 Print $ t $ integers: the $ i $ -th integer is the largest $ x_i $ such that $ p_i $ is divisible by $ x_i $ , but $ x_i $ is not divisible by $ q_i $ . One can show that there is always at least one value of $ x_i $ satisfying the divisibility conditions for the given constraints. ## 输入输出样例 #1 ### 输入 #1 ``` 3 10 4 12 6 179 822 ``` ### 输出 #1 ``` 10 4 179 ``` ## 说明/提示 For the first pair, where $ p_1 = 10 $ and $ q_1 = 4 $ , the answer is $ x_1 = 10 $ , since it is the greatest divisor of $ 10 $ and $ 10 $ is not divisible by $ 4 $ . For the second pair, where $ p_2 = 12 $ and $ q_2 = 6 $ , note that - $ 12 $ is not a valid $ x_2 $ , since $ 12 $ is divisible by $ q_2 = 6 $ ; - $ 6 $ is not valid $ x_2 $ as well: $ 6 $ is also divisible by $ q_2 = 6 $ . The next available divisor of $ p_2 = 12 $ is $ 4 $ , which is the answer, since $ 4 $ is not divisible by $ 6 $ .
最新发布
07-11
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值