2017年8月9日提高组T1 水题

本文介绍了一个简单的游戏胜负判断算法,通过判断玩家拿球次数的奇偶性来决定胜负。输入为游戏轮次及每次拿取的球数,输出为先手玩家是否能赢得比赛。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Description

小A和小a在玩一个游戏,这个游戏是这样的:现在有n个球,每次操作必须从中拿走k个球,不能操作者输。因为小A的字典序比较大(小),所以小A先手。现在问你小A是否能赢。

Input

第一行一个正整数T表示数据组数。
接下来T行每行两个正整数n和k。

Output

如果小A能赢,则输出YES,否则输出NO。

Sample Input

1
10 4

Sample Output

NO

Hint

对于前30%的数据,n,k<=1000.
对于100%的数据,n,k<=10^18,T<=10

2017年8月9日提高组T1 水题

分析:水题。
判断n/k的奇偶性即可。

代码:

var
 t,i:longint;
 n,k,p:int64;
begin
 readln(t);
 for i:=1 to t do
  begin
   readln(n,k);
   p:=n div k;
   if p mod 2=1 then writeln('YES')
                else writeln('NO');
  end;
end.


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值