求逆元

本文深入探讨了逆元的概念及其在ACM-ICPC竞赛中的应用,包括如何利用扩展欧几里得算法和费马小定理求解逆元,特别强调了其在解决同余方程问题时的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

今天我们来探讨逆元在ACM-ICPC竞赛中的应用,逆元是一个很重要的概念,必须学会使用它。

 

对于正整数,如果有,那么把这个同余方程中的最小正整数解叫做的逆元。

 

逆元一般用扩展欧几里得算法来求得,如果为素数,那么还可以根据费马小定理得到逆元为

 

推导过程如下

                            

 

求现在来看一个逆元最常见问题,求如下表达式的值(已知

 

           

 

当然这个经典的问题有很多方法,最常见的就是扩展欧几里得,如果是素数,还可以用费马小定理。

 

但是你会发现费马小定理和扩展欧几里得算法求逆元是有局限性的,它们都会要求互素。实际上我们还有一

种通用的求逆元方法,适合所有情况。公式如下

 

          

 

现在我们来证明它,已知,证明步骤如下

 

          

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值