Given a non negative integer number num. For every numbers i in the range 0 ≤ i ≤ num calculate the number of 1’s in their binary representation and return them as an array.
Example 1:
Input: 2
Output: [0,1,1]
Example 2:
Input: 5
Output: [0,1,1,2,1,2]
给出一个数num,让output出从0到num中所有整数的二进制数中有多少个1,返回数组
思路:
找规律
参考https://www.cnblogs.com/grandyang/p/5294255.html中的方法3
规律是,从1开始,遇到偶数时,其1的个数和该偶数除以2得到的数字的1的个数相同,遇到奇数时,其1的个数等于该奇数除以2得到的数字的1的个数再加1
0000 0
-------------
0001 1
-------------
0010 1
0011 2
-------------
0100 1
0101 2
0110 2
0111 3
-------------
1000 1
1001 2
1010 2
1011 3
1100 2
1101 3
1110 3
1111 4
//1ms
public int[] countBits(int num) {
int[] result = new int[num + 1];
for (int i = 1; i <= num; i++) {
if (i % 2 == 1) { //odd..
result[i] = result[i / 2] + 1;
} else { //even..
result[i] = result[i / 2];
}
}
return result;
}
方法二:
巧妙利用i & (i-1), 这是用来判断是否为2的指数的方法,为0时表示是2的指数,
用dp数组保存当前i bit为1的个数,dp[i] = dp[i & (i-1)] + 1
//1ms
public int[] countBits(int num) {
if(num < 0) {
return new int[]{};
}
int[] dp = new int[num + 1];
dp[0] = 0;
for(int i = 1; i <= num; i++) {
dp[i] = dp[i & (i - 1)] + 1;
}
return dp;
}
本文介绍了一种快速计算从0到给定数num范围内所有整数的二进制表示中1的数量的方法。通过观察规律,对于偶数,其二进制中1的个数等于它一半的数的1的个数;对于奇数,则是在它一半的数的1的个数基础上加1。此外,还提供了一个利用位运算i&(i-1)的技巧来进一步优化算法。
238

被折叠的 条评论
为什么被折叠?



