leetcode 437.Path Sum III (路径和III)

本文介绍了一种算法,用于在二叉树中查找所有路径,这些路径的节点值之和等于给定的目标值。路径可以始于任意节点,但必须向下延伸至子节点。文章详细解释了实现这一目标的双函数方法:一个函数遍历所有节点,另一个函数计算从当前节点出发的所有可能路径的和。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

You are given a binary tree in which each node contains an integer value.

Find the number of paths that sum to a given value.

The path does not need to start or end at the root or a leaf, but it must go downwards (traveling only from parent nodes to child nodes).

The tree has no more than 1,000 nodes and the values are in the range -1,000,000 to 1,000,000.

Example:

root = [10,5,-3,3,2,null,11,3,-2,null,1], sum = 8

      10
     /  \
    5   -3
   / \    \
  3   2   11
 / \   \
3  -2   1

Return 3. The paths that sum to 8 are:
1.  5 -> 3
2.  5 -> 2 -> 1
3. -3 -> 11

给出一棵二叉树,找出得到给定值的路径数
路径可以从任意节点开始,但是必须是向下走的

思路:
两个函数,一个遍历所有节点,一个遍历以当前节点为root的子树

遍历以当前节点为root的函数:
root值如果等于target值,那么直接path++
中序遍历,遍历左右子树的时候,和变为sum-root.val

遍历所有节点:
中序遍历所有节点

class Solution {
    int count = 0;
    public int pathSum(TreeNode root, int sum) {
        if (root == null) {
            return 0;
        }
        
        getSum(root, sum);
        pathSum(root.left, sum);
        pathSum(root.right, sum);
        
        return count;
    }
    
    public void getSum(TreeNode root, int sum) {
        if (root == null) {
            return;
        }
        
        if (root.val == sum) {
            count ++;
        }
        
        getSum(root.left, sum - root.val);
        getSum(root.right, sum - root.val);
    }
}
### LeetCode Hot 100 路径 III Java 解决方案 #### 方法一:暴力递归法 此方法通过遍历每一个节点并尝试找到从该节点出发的所有可能路径,判断这些路径是否等于目标值。 ```java class Solution { int pathnumber; public int pathSum(TreeNode root, long sum) { if (root == null) return 0; Sum(root, sum); pathSum(root.left, sum); pathSum(root.right, sum); return pathnumber; } public void Sum(TreeNode root, long sum) { if (root == null) return; sum -= root.val; if (sum == 0) { pathnumber++; } Sum(root.left, sum); Sum(root.right, sum); } } ``` 这种方法虽然简单直观,但在处理大规模数据时效率较低。对于某些极端情况下的输入,可能会导致性能问题[^1]。 #### 方法二:优化后的前缀加哈希表 为了提高算法效率,可以采用前缀的概念加上哈希表来记录已经访问过的节点及其累积值。这样可以在一次深度优先搜索过程中完成计算,而不需要重复遍历子树。 ```java import java.util.HashMap; public class Solution { private HashMap<Long, Integer> prefixSumCount = new HashMap<>(); public int pathSum(TreeNode root, int targetSum) { prefixSumCount.put(0L, 1); return findPath(root, 0L, targetSum); } private int findPath(TreeNode node, long currentSum, int targetSum) { if (node == null) return 0; // 更新当前累计 currentSum += node.val; // 计算满足条件的数量 int numPathsToCurrentNode = prefixSumCount.getOrDefault(currentSum - targetSum, 0); // 将当前累计加入map中 prefixSumCount.put(currentSum, prefixSumCount.getOrDefault(currentSum, 0) + 1); // 继续向下探索左右子树 int leftResult = findPath(node.left, currentSum, targetSum); int rightResult = findPath(node.right, currentSum, targetSum); // 移除当前结点的影响以便回溯到父级调用者处继续其他分支的查找工作 prefixSumCount.put(currentSum, prefixSumCount.get(currentSum) - 1); return numPathsToCurrentNode + leftResult + rightResult; } } ``` 这种改进的方法不仅提高了时间复杂度至 O(n),而且空间上也更加高效,适用于更广泛的情况[^2]。 #### 数据约束说明 题目规定了二叉树中的节点数量范围以及各节点取值区间: - 二叉树的节点个数的范围是 [0,1000] - `-10^9 <= Node.val <= 10^9` - `-1000 <= targetSum <= 1000` 因此,在实现解决方案时需要注意数值类型的选取以防止溢出等问题的发生[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

蓝羽飞鸟

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值