leetcode解题之爬楼梯

本文探讨了一个经典的数学问题——爬楼梯的不同方法数量,并将其与斐波那契数列联系起来。通过一个简洁的算法实现,展示了如何计算达到楼顶的可能路径数目。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

假设你正在爬楼梯。需要 n 阶你才能到达楼顶。

每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?

注意:给定 n 是一个正整数。

示例 1:

输入: 2 输出: 2 解释: 有两种方法可以爬到楼顶。

  1. 1 阶 + 1 阶
  2. 2 阶 示例 2:

输入: 3 输出: 3 解释: 有三种方法可以爬到楼顶。

  1. 1 阶 + 1 阶 + 1 阶
  2. 1 阶 + 2 阶
  3. 2 阶 + 1 阶

来源:力扣(LeetCode) 链接:https://leetcode-cn.com/problems/climbing-stairs
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

典型的斐波那契数列(但是我不知道啊),记录一下

class Solution {
    //斐波那契数列f(n)=f(n-1)+f(n-2)
    public int climbStairs(int n) {
        if(n<=2){
            return n;
        }
        int first=1,second=2;
        for(int i=3;i<=n;i++){
            int third=first+second;
            first=second;
            second=third;
        }
        return second;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值