本文主要实现slam中图优化中的回环优化。
对以下的拓扑地图进行图优化。
参考http://blog.youkuaiyun.com/heyijia0327/article/details/47686523
1.问题及推导
对此图优化问题表述如下:
假设一个机器人初始起点在x0处,设这个起始点固定。然后机器人向前移动,通过编码器测得它向前移动了1m,到达第二个地点。接着,又向后返回,编码器测得它向后移动了0.8米。但是,通过闭环检测,发现它回到了原始起点。可以看出,编码器误差导致计算的位姿和观测到有差异,那机器人这几个状态中的位姿到底是怎么样的才最好的满足这些条件呢?
设残差函数为
其中表示结点i到结点j的理想观测值,是需要求解的。
表示此次观测值。
以上例子中,=1
为了使估计更接近真实值,就是使每个误差项的残差平方和最小。
其中
由于x0为起始点,固定,不参与优化,所有x0变量设为常数值0。
对于变量x1,x2,x3,为了使残差平方和最小值,对残差c求偏导并等于0就可以解出x1,x2,x3。
解得x1=0,x2=0.933,x3=0.06
当然在实际应用中不会使用以上的方法用求偏导的方式求解优化问题。通常使用高斯牛顿迭代法求解。
2.优化实验(使用g2o)
以下代码使用g2o库函数实现对以上问题的优化求解
#include <iostream>
#include <fstream>
#include <vector>
#include <cmath>
#include <Eigen/Core>
#include <Eigen/Dense>
#include <Eigen/Geometry>
#include <Eigen/StdVector>
#include "g2o/core/sparse_optimizer.h"
#include "g2o/core/block_solver.h"
#include "g2o/core/factory.h"
#include "g2o/core/optimization_algorithm_levenberg.h"
#include "g2o/solvers/csparse/linear_solver_csparse.h"
#include "g2o/types/slam3d/vertex_se3.h"
#include "g2o/types/slam3d/edge_se3.h"
#define MAXITERATION 50
// 使用 宏函数 声明边和顶点类型,注意注释掉了上面两个头文件
G2O_USE_TYPE_GROUP(slam3d);
using namespace std;
using namespace g2o;
int main()
{
vector<VertexSE3*> vertices;
vector<EdgeSE3*> edges;
Eigen::Matrix<double, 6, 6> information = Eigen::Matrix<double,6,6>::Identity();
int id = 0;
//add x0,x1,x2,x3
//x0=0
Eigen::AngleAxisd rotz0(0, Eigen::Vector3d::UnitZ());
Eigen::Matrix3d rot0 = rotz0.toRotationMatrix();
Eigen::Isometry3d t0;
t0 = rot0;
t0.translation() = Eigen::Vector3d(0, 0, 0);
VertexSE3* v0 = new VertexSE3;
v0->setId(id++);
v0->setEstimate(t0);
vertices.push_back(v0);
//x1=0
Eigen::AngleAxisd rotz1(0, Eigen::Vector3d::UnitZ());
Eigen::Matrix3d rot1 = rotz1.toRotationMatrix();
Eigen::Isometry3d t1;
t1 = rot1;
t1.translation() = Eigen::Vector3d(0, 0, 0);
VertexSE3* v1 = new VertexSE3;
v1->setId(id++);
v0->setEstimate(t1);
vertices.push_back(v1);
//x2=1
Eigen::AngleAxisd rotz2(0, Eigen::Vector3d::UnitZ());
Eigen::Matrix3d rot2 = rotz2.toRotationMatrix();
Eigen::Isometry3d t2;
t2 = rot2;
t2.translation() = Eigen::Vector3d(0, 0, 1);
VertexSE3* v2 = new VertexSE3;
v2->setId(id++);
v2->setEstimate(t2);
vertices.push_back(v2);
//x3=0.2
Eigen::AngleAxisd rotz3(0, Eigen::Vector3d::UnitZ());
Eigen::Matrix3d rot3 = rotz3.toRotationMatrix();
Eigen::Isometry3d t3;
t3 = rot3;
t3.translation() = Eigen::Vector3d(0, 0, 0.2);
VertexSE3* v3 = new VertexSE3;
v3->setId(id++);
v3->setEstimate(t3);
vertices.push_back(v3);
//e01=0
VertexSE3* prev01 = vertices[0];
VertexSE3* cur01 = vertices[1];
Eigen::AngleAxisd r01(0, Eigen::Vector3d::UnitZ());
Eigen::Matrix3d r01m = r01.toRotationMatrix();
Eigen::Isometry3d t01;
t01 = r01m;
t01.translation() = Eigen::Vector3d(0, 0, 0);
EdgeSE3* e01 = new EdgeSE3;
e01->setVertex(0, prev01);
e01->setVertex(1, cur01);
e01->setMeasurement(t01);
e01->setInformation(information);
edges.push_back(e01);
//e12=1
VertexSE3* prev12 = vertices[1];
VertexSE3* cur12 = vertices[2];
Eigen::AngleAxisd r12(0, Eigen::Vector3d::UnitZ());
Eigen::Matrix3d r12m = r12.toRotationMatrix();
Eigen::Isometry3d t12;
t12 = r12m;
t12.translation() = Eigen::Vector3d(0, 0, 1);
EdgeSE3* e12 = new EdgeSE3;
e12->setVertex(0, prev12);
e12->setVertex(1, cur12);
e12->setMeasurement(t12);
e12->setInformation(information);
edges.push_back(e12);
//e23=-0.8
VertexSE3* prev23= vertices[2];
VertexSE3* cur23 = vertices[3];
Eigen::AngleAxisd r23(0, Eigen::Vector3d::UnitZ());
Eigen::Matrix3d r23m = r23.toRotationMatrix();
Eigen::Isometry3d t23;
t23 = r23m;
t23.translation() = Eigen::Vector3d(0, 0, -0.8);
EdgeSE3* e23 = new EdgeSE3;
e23->setVertex(0, prev23);
e23->setVertex(1, cur23);
e23->setMeasurement(t23);
e23->setInformation(information);
edges.push_back(e23);
//e31=0
VertexSE3* prev31= vertices[3];
VertexSE3* cur31 = vertices[1];
Eigen::AngleAxisd r31(0, Eigen::Vector3d::UnitZ());
Eigen::Matrix3d r31m = r31.toRotationMatrix();
Eigen::Isometry3d t31;
t31 = r31m;
t31.translation() = Eigen::Vector3d(0, 0,0);
EdgeSE3* e31 = new EdgeSE3;
e31->setVertex(0, prev31);
e31->setVertex(1, cur31);
e31->setMeasurement(t31);
e31->setInformation(information);
edges.push_back(e31);
// write output
ofstream fileOutputStream;
string outFilename="./ori.g2o";
cout<<outFilename<<endl;
fileOutputStream.open(outFilename.c_str());
//CommandArgs arg;
//arg.param("o", outFilename, "-", "output filename");
string vertexTag = Factory::instance()->tag(vertices[0]);
string edgeTag = Factory::instance()->tag(edges[0]);
//ostream& fout = outFilename != "./out.g2o" ? fileOutputStream : cout;
ostream& fout=fileOutputStream;
for (size_t i = 0; i < vertices.size(); ++i) {
VertexSE3* v = vertices[i];
fout << vertexTag << " " << v->id() << " ";
v->write(fout);
fout << endl;
}
for (size_t i = 0; i < edges.size(); ++i) {
EdgeSE3* e = edges[i];
VertexSE3* from = static_cast<VertexSE3*>(e->vertex(0));
VertexSE3* to = static_cast<VertexSE3*>(e->vertex(1));
fout << edgeTag << " " << from->id() << " " << to->id() << " ";
e->write(fout);
fout << endl;
}
BlockSolverX::LinearSolverType * linearSolver = new LinearSolverCSparse<BlockSolverX::PoseMatrixType>();
// create the block solver on the top of the linear solver
BlockSolverX* blockSolver = new BlockSolverX(linearSolver);
//create the algorithm to carry out the optimization
OptimizationAlgorithmLevenberg* optimizationAlgorithm = new OptimizationAlgorithmLevenberg(blockSolver);
// create the optimizer
SparseOptimizer optimizer;
optimizer.addVertex(v0);
optimizer.addVertex(v1);
optimizer.addVertex(v2);
optimizer.addVertex(v3);
optimizer.addEdge(e01);
optimizer.addEdge(e12);
optimizer.addEdge(e23);
optimizer.addEdge(e31);
//优化过程中,第一个点固定,不做优化; 也可以不固定。
VertexSE3* firstRobotPose = dynamic_cast<VertexSE3*>(optimizer.vertex(0));
firstRobotPose->setFixed(true);
optimizer.setAlgorithm(optimizationAlgorithm);
optimizer.setVerbose(true);
optimizer.initializeOptimization();
cerr<<"Optimizing ..."<<endl;
optimizer.optimize(MAXITERATION);
cerr<<"done."<<endl;
optimizer.save("./opt_after.g2o");
return 0;
}
运行程序
打开opt_after.g2o
输出结果如下
VERTEX_SE3:QUAT 0 0 0 0 0 0 0 1
FIX 0
VERTEX_SE3:QUAT 1 0 0 1.30621e-09 0 0 0 1
VERTEX_SE3:QUAT 2 0 0 0.933333 0 0 0 1
VERTEX_SE3:QUAT 3 0 0 0.0666667 0 0 0 1
EDGE_SE3:QUAT 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 1 0 1
EDGE_SE3:QUAT 1 2 0 0 1 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 1 0 1
EDGE_SE3:QUAT 2 3 0 0 -0.8 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 1 0 1
EDGE_SE3:QUAT 3 1 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 1 0 1
发现优化后的x1=1.30621e-09,x2=0.933333,x3=0.0666667
和以上的用求偏导的方式所求得的值相同。