信号处理抽取多项滤波的数学推导与仿真


昨天的《信号处理之插值、抽取与多项滤波》,已经介绍了插值抽取的多项滤率,今天详细介绍多项滤波的数学推导,并附上实战仿真代码。

一、数学变换推导

1. 多相分解的核心思想

将FIR滤波器的系数 h ( n ) h(n) h(n)按相位分组,每组对应输入信号的不同抽样相位。通过分相、滤波、重组,实现与原FIR等效的处理。

2. 数学变换推导

FIR滤波器的系统函数可表示为:
H ( z ) = ∑ n = 0 N − 1 h ( n ) z − n H(z) = \sum_{n=0}^{N-1} h(n) z^{-n} H(z)=n=0N1h(n)zn
其中, h ( n ) h(n) h(n)为滤波器系数, N N N为阶数。

设分解因子为 M M M,则第 k k k个子滤波器系数为:
h k ( m ) = h ( k + m M ) , 0 ≤ k < M h_k(m) = h(k + mM), \quad 0 \leq k < M hk(m)=h(k+mM),0k<M

将FIR滤波器拆分为 M M M个并行的子滤波器(即多相分量),每个子滤波器处理信号的特定相位分量,再通过延迟和组合实现等效。目标形式为:

H ( z ) = ∑ k = 0 M − 1 z − k H k ( z M ) H(z) = \sum_{k=0}^{M-1} z^{-k} H_k(z^M) H(z)=k=0M1zkHk(zM)
其中, H k ( z M ) H_k(z^M) Hk(zM)表示第 k k k个子滤波器的系统函数。

H ( z ) H(z) H(z) M M M的整数倍延迟展开:
H ( z ) = ∑ n = 0 N − 1 h ( n ) z − n = ∑ k = 0 M − 1 ∑ m = 0 K − 1 h ( k + m M

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

极客不孤独

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值