题目描述
定义fnf_nfn为用1×21\times 21×2骨牌填满2×n2\times n2×n网格的方案数,gng_ngn为填满3×n3\times n3×n网格的方案数。
求:
1r−l+1∑i=lrCfik/1r−l+1∑i=lrCgikmod 998244353\frac{1}{r-l+1}\sum_{i=l}^rC_{f_i}^k/\frac{1}{r-l+1}\sum_{i=l}^rC_{g_i}^k\texttt{mod 998244353}r−l+11i=l∑rCfik/r−l+11i=l∑rCgikmod 998244353
l≤r≤1018,k≤500l\leq r\leq 10^{18},k\leq 500l≤r≤1018,k≤500
解题思路
Cfik=fik‾k!C_{f_i}^k=\frac{f_i^{\underline k}}{k!}Cfik=k!fik
fnk‾=∑i=0k(−1)k−iSkifnif_n^{\underline k}=\sum_{i=0}^k(-1)^{k-i}S_k^if_n^ifnk=i=0∑k(−1)k−iSkifni
其中 SnkS_n^kSnk代表第一类斯特林数。
∑i=0nCfik=1k!∑i=0n∑j=0k(−1)k−jSkjfij=1k!∑j=0k(−1)k−jSkj∑i=0nfij
\begin{aligned}
\sum_{i=0}^nC_{f_i}^k&=\frac{1}{k!}\sum_{i=0}^n\sum_{j=0}^k(-1)^{k-j}S_k^jf_i^j\\
&=\frac{1}{k!}\sum_{j=0}^k(-1)^{k-j}S_k^j\sum_{i=0}^nf_i^j\\
\end{aligned}
i=0∑nCfik=k!1i=0∑nj=0∑k(−1)k−jSkjfij=k!1j=0∑k(−1)k−jSkji=0∑nfij
问题变为求解 ∑i=0nfij\sum_{i=0}^nf_i^j∑i=0nfij
众所周知 fnf_nfn 是斐波那契第n+1n+1n+1项。
斐波那契通项公式:
fn=15((1+52)n+1−(1−52)n+1)f_n=\frac{1}{\sqrt 5}((\frac{1+\sqrt 5}{2})^{n+1}-(\frac{1-\sqrt 5}{2})^{n+1})fn=51((21+5)n+1−(21−5)n+1)
可以化为fn=Aαn+1+Bβn+1f_n=A\alpha^{n+1}+B\beta^{n+1}fn=Aαn+1+Bβn+1
带入原式并展开:
∑i=0n(Aαi+1+Bβi+1)k=∑i=0n∑j=0kCkj(Aαi+1)j(Bβi+1)k−j=∑i=0n∑j=0kCkjAjα(i+1)jBk−jβ(i+1)(k−j)=∑i=0n∑j=0kCkjAjBk−j(αjβk−j)i+1=∑j=0kCkjAjBk−j∑i=0n(αjβk−j)i+1
\begin{aligned}
\sum_{i=0}^n(A\alpha^{i+1}+B\beta^{i+1})^k&=\sum_{i=0}^n\sum_{j=0}^kC_k^j(A\alpha^{i+1})^j(B\beta^{i+1})^{k-j}\\
&=\sum_{i=0}^n\sum_{j=0}^kC_k^jA^j\alpha^{(i+1)j}B^{k-j}\beta^{(i+1)(k-j)}\\
&=\sum_{i=0}^n\sum_{j=0}^kC_k^jA^jB^{k-j}(\alpha^j\beta^{k-j})^{i+1}\\
&=\sum_{j=0}^kC_k^jA^jB^{k-j}\sum_{i=0}^n(\alpha^j\beta^{k-j})^{i+1}
\end{aligned}
i=0∑n(Aαi+1+Bβi+1)k=i=0∑nj=0∑kCkj(Aαi+1)j(Bβi+1)k−j=i=0∑nj=0∑kCkjAjα(i+1)jBk−jβ(i+1)(k−j)=i=0∑nj=0∑kCkjAjBk−j(αjβk−j)i+1=j=0∑kCkjAjBk−ji=0∑n(αjβk−j)i+1
前面枚举后直接算,后边是等比数列求和可以O(1)O(1)O(1)算,需要特判公比为111的情况。
因为5\sqrt 55不存在mod 998244353\texttt{mod 998244353}mod 998244353下的二次剩余,因此需要扩域,即把数字表示成a+b5a+b\sqrt 5a+b5的形式,类似复数的运算。
gng_ngn也可以找出通项公式然后表示成和fnf_nfn相同的形式,可以类似算。
复杂度O(Tk2logn)O(Tk^2\log n)O(Tk2logn)
#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
const int mod = 998244353;
inline LL Pow(LL a,LL b)
{
a%=mod;
LL res=1;
while(b)
{
if(b&1)res=res*a%mod;
a=a*a%mod;
b>>=1;
}
return res;
}
LL D;
struct Complex
{
LL a,b;
Complex(){a=b=0;}
Complex(LL x,LL y){a=(x%mod+mod)%mod;b=(y%mod+mod)%mod;}
Complex operator +(Complex x){return Complex(a+x.a,b+x.b);}
Complex operator -(Complex x){return Complex(a-x.a,b-x.b);}
Complex operator *(Complex x){return Complex(a*x.a+b*x.b%mod*D,a*x.b+b*x.a);}
};
Complex operator *(LL k,Complex x){return Complex(k*x.a,k*x.b);}
Complex inv(Complex x)
{
LL P=(x.a*x.a%mod-x.b*x.b%mod*D%mod+mod)%mod;
P=Pow(P,mod-2);
return Complex(x.a*P%mod,mod-x.b*P%mod);
}
Complex Pow(Complex a,LL b)
{
Complex res=Complex(1,0);
a=Complex(a.a,a.b);
while(b)
{
if(b&1)res=res*a;
a=a*a;
b>>=1;
}
return res;
}
const int N = 520;
LL S[N][N],C[N][N];
LL I2=Pow(2,mod-2),I6=Pow(6,mod-2);
int m;
Complex alpha,beta,A,B;
LL L,R,k;
LL pw(LL x){return (x&1)?mod-1:1;}
LL calc(LL n,LL k)
{
LL coef=1;
for(int i=1;i<=k;i++)coef=1ll*coef*i%mod;
coef=Pow(coef,mod-2);
Complex One=Complex(1,0),Zero=Complex(0,0);
LL ans=0;
for(int i=0;i<=k;i++)
{
LL P=1ll*S[k][i]*pw(k-i)%mod;
Complex res=Zero;
for(int j=0;j<=i;j++)
{
Complex u=Pow(alpha,i-j)*Pow(beta,j);
Complex v=Pow(u,n+1);
if(u.a==1&&u.b==0) v.a=(n+1)%mod,v.b=0;
else u=inv(One-u),v=(One-v)*u;
v=v*Pow(A,i-j)*Pow(B,j);
v=C[i][j]*v;
res=res+v;
}
ans=(ans+1ll*P*res.a%mod)%mod;
}
return 1ll*ans*coef%mod;
}
void solve()
{
scanf("%lld %lld %lld",&L,&R,&k);
LL coef=Pow(R-L+1,mod-2);
if(m==2)R++;
else L=(L-1)/2,R/=2;
LL res=(calc(R,k)-calc(L,k)+mod)%mod*coef%mod;
printf("%lld\n",res);
}
void put(Complex x)
{
cout<<x.a<<' '<<x.b<<endl;
}
int main()
{
C[0][0]=1;S[0][0]=1;
for(int i=1;i<N;i++)
{
C[i][0]=1;
for(int j=1;j<=i;j++)
{
C[i][j]=(C[i-1][j-1]+C[i-1][j])%mod;
S[i][j]=(S[i-1][j-1]+1ll*(i-1)*S[i-1][j]%mod)%mod;
}
}
int T;
cin>>T>>m;
if(m==2)
{
D=5;
alpha=Complex(I2,I2);
beta=Complex(I2,-I2);
A=Complex(1,0)*inv(Complex(0,1));
B=Complex(0,0)-A;
}
if(m==3)
{
D=3;
alpha=Complex(2,-1);
beta=Complex(2,1);
A=Complex(I2,-I6);
B=Complex(I2,I6);
}
while(T--)
{
solve();
}
return 0;
}

本文探讨了如何利用斐波那契数列和第一类斯特林数的性质,通过计算C(f_i)^k和C(g_i)^k的组合来解决填充不同网格的方案数问题。通过化简通项公式和等比数列求和,提出了一种O(Tk^2logn)的时间复杂度算法,并给出了C++代码实现。
563

被折叠的 条评论
为什么被折叠?



