Why I can't reproduce my results

本文详细介绍了PyTorch中CPU与GPU随机种子的独立性及设置方法,包括使用多个GPU时如何设置torch.cuda.manual_seed_all,以及使用cudnn时如何确保结果的确定性。同时,列举了在不同函数中设置随机种子的例子,以及容易忽视的随机种子保存与加载问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. Pytorch's CPU's and GPU's seeds are independent. So set/save/load them independently

https://discuss.pytorch.org/t/are-gpu-and-cpu-random-seeds-independent/142

2. If you use randomness on severall gpus, you need to set torch.cuda.manual_seed_all(seed).

If you use cudnn, you need to set torch.backends.cudnn.deterministic=True.

3. There are many lines that set random seeds in different functions. E.g.,

linear_layer_init(seed=1)

sample_next_word(seed=10)

4. Different random generators

import random as rng

import numpy.random as rng

import torch; torch.cuda.manual_seed()

5. Forget to save random seed before testing the model on test/dev sets (which also do sampling or shuffle or simply setting seeds)

6. Forget to test immediately after loading the model before resuming training (because testing(random sample involved, performance showed) is always at the end of each epoch)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值