三角函数
I 基本性质
(i) 对积
sinxcscx=1cosxsecx=1tanxcotx=1\begin{aligned} \sin x \csc x = 1 \\ \cos x \sec x = 1 \\ \tan x \cot x = 1 \\ \end{aligned}sinxcscx=1cosxsecx=1tanxcotx=1
(ii) 夹积
tanxcosx=sinxsinxcotx=cosxcosxcscx=cotxcotxsecx=cscxtanxcscx=secxsinxsecx=tanx\begin{aligned} \tan x \cos x &= \sin x \\ \sin x \cot x &= \cos x \\ \cos x \csc x &= \cot x \\ \cot x \sec x &= \csc x\\ \tan x \csc x &= \sec x \\ \sin x \sec x &= \tan x \\ \end{aligned}tanxcosxsinxcotxcosxcscxcotxsecxtanxcscxsinxsecx=sinx=cosx=cotx=cscx=secx=tanx
(iii) 平方和
sin2x+cos2x=11+cot2x=csc2xtan2x+1=sec2x\begin{aligned} \sin^2 x + \cos^2 x = 1 \\ 1 + \cot^2 x = \csc^2 x \\ \tan^2 x + 1 = \sec^2 x \\ \end{aligned}sin2x+cos2x=11+cot2x=csc2xtan2x+1=sec2x
II 和积
(i) 加减
sin(x±y)=sinxcosy±cosxsinycos(x±y)=cosxcosy∓sinxsinytan(x±y)=tanx±tany1∓tanxtany\begin{aligned} \sin(x \pm y) &= \sin x \cos y \pm \cos x \sin y \\ \cos(x \pm y) &= \cos x \cos y \mp \sin x \sin y \\ \tan(x \pm y) &= \frac{\tan x \pm \tan y}{1 \mp \tan x \tan y} \end{aligned}sin(x±y)cos(x±y)tan(x±y)=sinxcosy±cosxsiny=cosxcosy∓sinxsiny=1∓tanxtanytanx±tany
(ii) 和差化积
sinx±siny=2sin(x±y2)cos(x∓y2)cosx+cosy=2cos(x+y2)cos(x−y2)cosx−cosy=−2sin(x+y2)sin(x−y2)\begin{aligned} \sin x \pm \sin y &= 2 \sin(\frac{x \pm y}{2})\cos(\frac{x \mp y}{2}) \\ \cos x + \cos y &= 2 \cos(\frac{x + y}{2})\cos(\frac{x - y}{2}) \\ \cos x - \cos y &= -2 \sin(\frac{x + y}{2})\sin(\frac{x - y}{2}) \end{aligned}sinx±sinycosx+cosycosx−cosy=2sin(2x±y)cos(2x∓y)=2cos(2x+y)cos(2x−y)=−2sin(2x+y)sin(2x−y)
(iii) 积化和差
sinxcosy=12[sin(x−y)+sin(x+y)]cosxcosy=12[cos(x−y)+cos(x+y)]sinxsiny=12[cos(x−y)−cos(x+y)]\begin{aligned} \sin x \cos y &= \frac{1}{2}[\sin(x - y) + \sin(x + y)] \\ \cos x \cos y &= \frac{1}{2}[\cos(x - y) + \cos(x + y)] \\ \sin x \sin y &= \frac{1}{2}[\cos(x - y) - \cos(x + y)] \end{aligned}sinxcosycosxcosysinxsiny=21[sin(x−y)+sin(x+y)]=21[cos(x−y)+cos(x+y)]=21[cos(x−y)−cos(x+y)]
III 倍角
(i) 半角
sin(x2)=±1−cosx2cos(x2)=±1+cosx2tan(x2)=±1−cosx1+cosx=sinx1+cosx=1−cosxsinx=cscx−cotx\begin{aligned} \sin(\frac{x}{2}) &= \pm \sqrt{\frac{1-\cos x}{2}} \\ \cos(\frac{x}{2}) &= \pm \sqrt{\frac{1+\cos x}{2}} \\ \tan(\frac{x}{2}) &= \pm \sqrt\frac{1-\cos x}{1+\cos x} &= \frac{\sin x}{1+\cos x} &= \frac{1-\cos x}{\sin x} &= \csc x - \cot x \\ \end{aligned}sin(2x)cos(2x)tan(2x)=±21−cosx=±21+cosx=±1+cosx1−cosx=1+cosxsinx=sinx1−cosx=cscx−cotx
(ii) 二倍角
sin2x=2sinxcosxcos2x=cos2x−sin2x=2cos2x−1=1−2sin2xtan2x=2tanx1−tan2x\begin{aligned} \sin 2x &= 2\sin x\cos x \\ \cos 2x &= \cos^2x-\sin^2x = 2\cos^2x - 1 = 1-2\sin^2x \\ \tan 2x &= \frac{2\tan x}{1-\tan^2x} \\ \end{aligned}sin2xcos2xtan2x=2sinxcosx=cos2x−sin2x=2cos2x−1=1−2sin2x=1−tan2x2tanx
(iii) N倍角
将 (cosθ+isinθ)n=cosnθ+isinnθ(\cos\theta + i\sin\theta)^n = \cos n\theta + i\sin n\theta(cosθ+isinθ)n=cosnθ+isinnθ 用二项式定理展开可得
cos(nθ)=∑i=0⌊n/2⌋(−1)iCn2icosn−2iθsin2iθsin(nθ)=∑i=0⌊(n−1)/2⌋(−1)iCn2i+1cosn−2i−1θsin2i+1θ\begin{aligned} \cos(n\theta) &= \sum_{i=0}^{\lfloor{n/2}\rfloor}{(-1)^i C_{n}^{2i}\cos^{n-2i}\theta\sin^{2i}\theta} \\ \sin(n\theta) &= \sum_{i=0}^{\lfloor{(n-1)/2}\rfloor}{(-1)^i C_{n}^{2i+1}\cos^{n-2i-1}\theta\sin^{2i+1}\theta} \\ \end{aligned}cos(nθ)sin(nθ)=i=0∑⌊n/2⌋(−1)iCn2icosn−2iθsin2iθ=i=0∑⌊(n−1)/2⌋(−1)iCn2i+1cosn−2i−1θsin2i+1θ
IV 万能
sinx=2u1+u2cosx=1−u21+u2tanx=2u1−u2dx=21+u2duu=tanx2\begin{aligned} \sin x &= \frac{2u}{1+u^2} \\ \cos x &= \frac{1-u^2}{1+u^2} \\ \tan x &= \frac{2u}{1-u^2} \\ \text{d}x &= \frac{2}{1+u^2}\text{d}u \\ u &= \tan\frac x2 \end{aligned}sinxcosxtanxdxu=1+u22u=1+u21−u2=1−u22u=1+u22du=tan2x
V 级数
设f(x)f(x)f(x)在点x=x0x=x_0x=x0具有任意阶导数,则幂级数
∑n=0∞f(n)(x0)n!(x−x0)n \sum_{n=0}^{\infin}{\frac{f^{(n)}(x_0)}{n!}(x-x_0)^n} n=0∑∞n!f(n)(x0)(x−x0)n
称为f(x)f(x)f(x)在点x0x_0x0处的泰勒级数。
其中x0=0x_0=0x0=0时,级数
∑n=0∞f(n)(0)n!xn \sum_{n=0}^{\infin}{\frac{f^{(n)}(0)}{n!}x^n} n=0∑∞n!f(n)(0)xn
称为麦克劳林级数。
sinx=x−x33!+x55!−x77!+⋯ \sin x = x-\frac{x^3}{3!}+\frac{x^5}{5!}-\frac{x^7}{7!}+ \cdots sinx=x−3!x3+5!x5−7!x7+⋯
cosx=1−x22!+x44!−x66!+⋯ \cos x = 1-\frac{x^2}{2!}+\frac{x^4}{4!}-\frac{x^6}{6!}+ \cdots cosx=1−2!x2+4!x4−6!x6+⋯
tanx=x+x33+2x515+17x7315+⋯ \tan x = x+\frac{x^3}{3}+\frac{2x^5}{15}+\frac{17x^7}{315}+\cdots tanx=x+3x3+152x5+31517x7+⋯
cotx=1x−x3−x345−2x5945−⋯ \cot x = \frac{1}{x}-\frac{x}{3}-\frac{x^3}{45}-\frac{2x^5}{945}-\cdots cotx=x1−3x−45x3−9452x5−⋯
secx=1+x22+5x424+61x6720+⋯ \sec x = 1+\frac{x^2}{2}+\frac{5x^4}{24}+\frac{61x^6}{720}+\cdots secx=1+2x2+245x4+72061x6+⋯
cscx=1x+x6+7x3360+31x515120+⋯ \csc x = \frac{1}{x}+\frac{x}{6}+\frac{7x^3}{360}+\frac{31x^5}{15120}+\cdots cscx=x1+6x+3607x3+1512031x5+⋯
arcsinx=x+12x33+1⋅32⋅4x55+1⋅3⋅52⋅4⋅6x77+⋯ \arcsin x = x + \frac{1}{2}\frac{x^3}{3} + \frac{1\cdot3}{2\cdot4}\frac{x^5}{5} + \frac{1\cdot3\cdot5}{2\cdot4\cdot6}\frac{x^7}{7}+\cdots arcsinx=x+213x3+2⋅41⋅35x5+2⋅4⋅61⋅3⋅57x7+⋯
arctanx={x−x33+x55−x77+⋯if ∣x∣<1±π2−1x+13x3−15x5+⋯+if x≥1,−if x≤−1 \arctan x = \begin{cases} x-\cfrac{x^3}{3}+\cfrac{x^5}{5}-\cfrac{x^7}{7}+\cdots &\text{if }{\left|{x}\right|<1} \\ \pm \cfrac{\pi}{2}-\cfrac{1}{x}+\cfrac{1}{3x^3}-\cfrac{1}{5x^5}+\cdots &+\text{if }{x\ge 1},-\text{if }{x\le-1} \end{cases} arctanx=⎩⎪⎨⎪⎧x−3x3+5x5−7x7+⋯±2π−x1+3x31−5x51+⋯if ∣x∣<1+if x≥1,−if x≤−1
对 11−x,(∣x∣<1)\cfrac 1{1-x},(|x|<1)1−x1,(∣x∣<1) 做导数、定积分及换元等操作, 容易得到级数
11−x=1+x+x2+x3+⋯11+x=1−x+x2−x3+⋯11−x2=1+x2+x4+x6+⋯11+x2=1−x2+x4−x6+⋯arth x=x+x33+x55+x77+⋯arctanx=x−x33+x55−x77+⋯ln(1+x)=x−x22+x33−x44+⋯
\frac 1{1-x}=1+x+x^2+x^3+\cdots\\
\frac 1{1+x}=1-x+x^2-x^3+\cdots \\
\frac 1{1-x^2}=1+x^2+x^4+x^6+\cdots \\
\frac 1{1+x^2}=1-x^2+x^4-x^6+\cdots \\
\text{arth }x= x+\frac{x^3}3+\frac{x^5}5+\frac{x^7}7+\cdots \\
\arctan x = x-\cfrac {x^3}3+\cfrac{x^5}5-\frac{x^7}7+\cdots \\
\ln (1+x) = x-\frac{x^2}{2}+\frac{x^3}3-\frac{x^4}4+\cdots
1−x1=1+x+x2+x3+⋯1+x1=1−x+x2−x3+⋯1−x21=1+x2+x4+x6+⋯1+x21=1−x2+x4−x6+⋯arth x=x+3x3+5x5+7x7+⋯arctanx=x−3x3+5x5−7x7+⋯ln(1+x)=x−2x2+3x3−4x4+⋯
VI 微积分
(i) 导数
(sinx)′=cosx(cosx)′=−sinx(tanx)′=1cos2x=sec2x(cotx)′=−1sin2x=−csc2x(secx)′=sinxcos2x=secxtanx(cscx)′=−cosxsin2x=−cscxcotx(arcsinx)′=11−x2(arccosx)′=−11−x2(arctanx)′=11+x2(arccot x)′=−11+x2(arcsec x)′=1xx2−1(arccsc x)′=−1xx2−1\begin{aligned} \left(\sin x\right)' &= \cos x \\ \left(\cos x\right)' &= -\sin x \\ \left(\tan x\right)' &= \frac{1}{\cos^2 x} = \sec^2 x \\ \left(\cot x\right)' &= -\frac{1}{\sin^2 x} = -\csc^2 x \\ \left(\sec x\right)' &= \frac{\sin x}{\cos^2 x} = \sec x \tan x \\ \left(\csc x\right)' &= -\frac{\cos x}{\sin^2 x} = -\csc x \cot x \\ \left(\arcsin x\right)' &= \frac{1}{\sqrt{1-x^2}} \\ \left(\arccos x\right)' &= -\frac{1}{\sqrt{1-x^2}} \\ \left(\arctan x\right)' &= \frac{1}{1+x^2} \\ \left(\text{arccot } x\right)' &= -\frac{1}{1+x^2} \\ \left(\text{arcsec } x\right)' &= \frac{1}{x\sqrt{x^2-1}} \\ \left(\text{arccsc } x\right)' &= -\frac{1}{x\sqrt{x^2-1}} \\ \end{aligned}(sinx)′(cosx)′(tanx)′(cotx)′(secx)′(cscx)′(arcsinx)′(arccosx)′(arctanx)′(arccot x)′(arcsec x)′(arccsc x)′=cosx=−sinx=cos2x1=sec2x=−sin2x1=−csc2x=cos2xsinx=secxtanx=−sin2xcosx=−cscxcotx=1−x21=−1−x21=1+x21=−1+x21=xx2−11=−xx2−11
(ii) 不定积分
∫sinxdx=−cosx+C∫cosxdx=sinx+C∫tanxdx=−ln∣cosx∣+C∫cotxdx=ln∣sinx∣+C∫secxdx=ln∣secx+tanx∣+C∫cscxdx=ln∣cscx−cotx∣+C∫arcsinxadx=xarcsinxa+a2−x2+C∫arccosxadx=xarccosxa−a2−x2+C∫arctanxadx=xarctanxa−x2ln(a2+x2)+C\begin{aligned} \int{\sin x\text{d} x} &= -\cos x +C \\ \int{\cos x\text{d} x} &= \sin x +C \\ \int{\tan x\text{d} x} &= -\ln\left|{\cos x}\right| +C \\ \int{\cot x\text{d} x} &= \ln\left|{\sin x}\right| +C \\ \int{\sec x\text{d} x} &= \ln\left|{\sec x + \tan x}\right| +C \\ \int{\csc x\text{d} x} &= \ln\left|{\csc x - \cot x}\right| +C \\ \int{\arcsin \frac{x}{a}\text{d} x} &= x\arcsin \frac{x}{a}+\sqrt{a^2-x^2} +C \\ \int{\arccos \frac{x}{a}\text{d} x} &= x\arccos \frac{x}{a}-\sqrt{a^2-x^2} +C \\ \int{\arctan \frac{x}{a}\text{d} x} &= x\arctan \frac{x}{a}-\frac{x}{2}\ln(a^2+x^2) +C \\ \end{aligned}∫sinxdx∫cosxdx∫tanxdx∫cotxdx∫secxdx∫cscxdx∫arcsinaxdx∫arccosaxdx∫arctanaxdx=−cosx+C=sinx+C=−ln∣cosx∣+C=ln∣sinx∣+C=ln∣secx+tanx∣+C=ln∣cscx−cotx∣+C=xarcsinax+a2−x2+C=xarccosax−a2−x2+C=xarctanax−2xln(a2+x2)+C
VII 特殊角
角度 | 弧度 | sin\sinsin | cos\coscos | tan\tantan | cot\cotcot | sec\secsec | csc\csccsc |
---|---|---|---|---|---|---|---|
0°±0{0\degree}_{\pm0}0°±0 | 0±00_{\pm0}0±0 | 000 | 111 | 000 | ±∞\pm\infin±∞ | 111 | ±∞\pm\infin±∞ |
15°15\degree15° | π12\frac\pi{12}12π | 6−24\frac{\sqrt6-\sqrt2}{4}46−2 | 6+24\frac{\sqrt6+\sqrt2}{4}46+2 | 2−32-\sqrt32−3 | 2+32+\sqrt32+3 | 6−2\sqrt6-\sqrt26−2 | 6+2\sqrt6+\sqrt26+2 |
18°18\degree18° | π10\frac\pi{10}10π | 5−14\frac{\sqrt5-1}{4}45−1 | 10+254\frac{\sqrt{10+2\sqrt5}}{4}410+25 | 5−255\sqrt{\frac{5-2\sqrt5}5}55−25 | 5+25\sqrt{5+2\sqrt5}5+25 | 50−1055\frac{\sqrt{50-10\sqrt5}}5550−105 | 5+1\sqrt5+15+1 |
22.5°22.5\degree22.5° | π8\frac\pi{8}8π | 2−22\frac{\sqrt{2-\sqrt2}}{2}22−2 | 2+22\frac{\sqrt{2+\sqrt{2}}}{2}22+2 | 2−1\sqrt2-12−1 | 2+1\sqrt2+12+1 | 4−22\sqrt{4-2\sqrt2}4−22 | 4+22\sqrt{4+2\sqrt2}4+22 |
30°30\degree30° | π6\frac\pi66π | 12\frac1221 | 32\frac{\sqrt3}{2}23 | 33\frac{\sqrt3}333 | 3\sqrt33 | 233\frac{2\sqrt3}3323 | 222 |
36°36\degree36° | π5\frac\pi55π | 10−254\frac{\sqrt{10-2\sqrt5}}{4}410−25 | 5+14\frac{\sqrt5+1}{4}45+1 | 5−25\sqrt{5-2\sqrt5}5−25 | 5+255\sqrt{\frac{5+2\sqrt5}5}55+25 | 5−1\sqrt5-15−1 | 10+255\sqrt{\frac{10+2\sqrt5}5}510+25 |
45°45\degree45° | π4\frac\pi44π | 22\frac{\sqrt2}222 | 22\frac{\sqrt2}222 | 111 | 111 | 2\sqrt22 | 2\sqrt22 |
54°54\degree54° | 3π10\frac{3\pi}{10}103π | 5+14\frac{\sqrt5+1}{4}45+1 | 10−254\frac{\sqrt{10-2\sqrt5}}{4}410−25 | 5+255\sqrt{\frac{5+2\sqrt5}5}55+25 | 5−25\sqrt{5-2\sqrt5}5−25 | 10+255\frac{10+2\sqrt5}5510+25 | 5−1\sqrt5-15−1 |
60°60\degree60° | π3\frac\pi33π | 32\frac{\sqrt3}{2}23 | 12\frac1221 | 3\sqrt33 | 33\frac{\sqrt3}333 | 222 | 233\frac{2\sqrt3}3323 |
67.5°67.5\degree67.5° | 3π8\frac{3\pi}883π | 2+22\frac{\sqrt{2+\sqrt{2}}}{2}22+2 | 2−22\frac{\sqrt{2-\sqrt2}}{2}22−2 | 2+1\sqrt2+12+1 | 2−1\sqrt2-12−1 | 4+22\sqrt{4+2\sqrt2}4+22 | 4−22\sqrt{4-2\sqrt2}4−22 |
72°72\degree72° | 2π5\frac{2\pi}552π | 10+254\frac{\sqrt{10+2\sqrt5}}{4}410+25 | 5−14\frac{\sqrt5-1}{4}45−1 | 5+25\sqrt{5+2\sqrt5}5+25 | 5−255\sqrt{\frac{5-2\sqrt5}5}55−25 | 5+1\sqrt5+15+1 | 50−1055\frac{\sqrt{50-10\sqrt5}}5550−105 |
75°75\degree75° | 5π12\frac{5\pi}{12}125π | 6+24\frac{\sqrt6+\sqrt2}{4}46+2 | 6−24\frac{\sqrt6-\sqrt2}{4}46−2 | 2+32+\sqrt32+3 | 2−32-\sqrt32−3 | 6+2\sqrt6+\sqrt26+2 | 6−2\sqrt6-\sqrt26−2 |
90°±0{90\degree}_{\pm0}90°±0 | π2±0{\frac\pi2}_{\pm0}2π±0 | 111 | 000 | ∓∞\mp\infin∓∞ | 000 | ∓∞\mp\infin∓∞ | 111 |
VIII 诱导
sin(x+2kπ)=−sin(−x)=−sin(x±π)=∓cos(x±12π)cos(x+2kπ)=cos(−x)=−cos(x±π)=±sin(x±12π)tan(x+kπ)=−tan(−x)=−cot(x±12π)cot(x+kπ)=−cot(−x)=−tan(x±12π)sec(x+2kπ)=sec(−x)=−sec(x±π)=±csc(x±12π)csc(x+2kπ)=−csc(−x)=−csc(x±π)=∓sec(x±12π)\begin{aligned} \sin(x+2k\pi) &= -\sin(-x) &= -\sin(x \pm \pi) &= \mp\cos(x \pm \frac12\pi) \\ \cos(x+2k\pi) &= \cos(-x) &= -\cos(x\pm\pi) &= \pm\sin(x\pm\frac12\pi) \\ \tan(x+k\pi) &= -\tan(-x) &&= -\cot(x\pm\frac12\pi) \\ \cot(x+k\pi) &= -\cot(-x) &&= -\tan(x\pm\frac12\pi) \\ \sec(x+2k\pi) &= \sec(-x) &= -\sec(x\pm\pi) &= \pm\csc(x\pm\frac12\pi) \\ \csc(x+2k\pi) &= -\csc(-x) &= -\csc(x\pm\pi) &= \mp\sec(x\pm\frac12\pi) \\ \end{aligned}sin(x+2kπ)cos(x+2kπ)tan(x+kπ)cot(x+kπ)sec(x+2kπ)csc(x+2kπ)=−sin(−x)=cos(−x)=−tan(−x)=−cot(−x)=sec(−x)=−csc(−x)=−sin(x±π)=−cos(x±π)=−sec(x±π)=−csc(x±π)=∓cos(x±21π)=±sin(x±21π)=−cot(x±21π)=−tan(x±21π)=±csc(x±21π)=∓sec(x±21π)
IX 反函数
(i) 余角
arcsinx+arccosx=π2arctanx+arccot x=π2arcsec x+arccsc x=π2\begin{aligned} \arcsin x+\arccos x &= \frac\pi2 \\ \arctan x+\text{arccot } x &= \frac\pi2 \\ \text{arcsec } x+\text{arccsc } x &= \frac\pi2 \end{aligned}arcsinx+arccosxarctanx+arccot xarcsec x+arccsc x=2π=2π=2π
(ii) 负数
arcsinx+arcsin(−x)=0arccosx+arccos(−x)=πarcsec x+arcsec (−x)=πarccsc x+arccsc (−x)=0\begin{aligned} \arcsin x + \arcsin(-x) &= 0 \\ \arccos x + \arccos(-x) &= \pi \\ \text{arcsec } x + \text{arcsec } (-x) &= \pi \\ \text{arccsc } x + \text{arccsc } (-x) &= 0 \\ \end{aligned}arcsinx+arcsin(−x)arccosx+arccos(−x)arcsec x+arcsec (−x)arccsc x+arccsc (−x)=0=π=π=0
(iii) 倒数
arcsinx=arccsc 1xarccosx=arcsec 1xarctanx=arccot 1x\begin{aligned} \arcsin x &=\text{arccsc }\frac 1x \\ \arccos x &=\text{arcsec }\frac 1x \\ \arctan x &=\text{arccot }\frac 1x \\ \end{aligned}arcsinxarccosxarctanx=arccsc x1=arcsec x1=arccot x1