[数学]三角函数

三角函数

I 基本性质

在这里插入图片描述

(i) 对积

sin⁡xcsc⁡x=1cos⁡xsec⁡x=1tan⁡xcot⁡x=1\begin{aligned} \sin x \csc x = 1 \\ \cos x \sec x = 1 \\ \tan x \cot x = 1 \\ \end{aligned}sinxcscx=1cosxsecx=1tanxcotx=1

(ii) 夹积

tan⁡xcos⁡x=sin⁡xsin⁡xcot⁡x=cos⁡xcos⁡xcsc⁡x=cot⁡xcot⁡xsec⁡x=csc⁡xtan⁡xcsc⁡x=sec⁡xsin⁡xsec⁡x=tan⁡x\begin{aligned} \tan x \cos x &= \sin x \\ \sin x \cot x &= \cos x \\ \cos x \csc x &= \cot x \\ \cot x \sec x &= \csc x\\ \tan x \csc x &= \sec x \\ \sin x \sec x &= \tan x \\ \end{aligned}tanxcosxsinxcotxcosxcscxcotxsecxtanxcscxsinxsecx=sinx=cosx=cotx=cscx=secx=tanx

(iii) 平方和

sin⁡2x+cos⁡2x=11+cot⁡2x=csc⁡2xtan⁡2x+1=sec⁡2x\begin{aligned} \sin^2 x + \cos^2 x = 1 \\ 1 + \cot^2 x = \csc^2 x \\ \tan^2 x + 1 = \sec^2 x \\ \end{aligned}sin2x+cos2x=11+cot2x=csc2xtan2x+1=sec2x

II 和积

(i) 加减

sin⁡(x±y)=sin⁡xcos⁡y±cos⁡xsin⁡ycos⁡(x±y)=cos⁡xcos⁡y∓sin⁡xsin⁡ytan⁡(x±y)=tan⁡x±tan⁡y1∓tan⁡xtan⁡y\begin{aligned} \sin(x \pm y) &= \sin x \cos y \pm \cos x \sin y \\ \cos(x \pm y) &= \cos x \cos y \mp \sin x \sin y \\ \tan(x \pm y) &= \frac{\tan x \pm \tan y}{1 \mp \tan x \tan y} \end{aligned}sin(x±y)cos(x±y)tan(x±y)=sinxcosy±cosxsiny=cosxcosysinxsiny=1tanxtanytanx±tany

(ii) 和差化积

sin⁡x±sin⁡y=2sin⁡(x±y2)cos⁡(x∓y2)cos⁡x+cos⁡y=2cos⁡(x+y2)cos⁡(x−y2)cos⁡x−cos⁡y=−2sin⁡(x+y2)sin⁡(x−y2)\begin{aligned} \sin x \pm \sin y &= 2 \sin(\frac{x \pm y}{2})\cos(\frac{x \mp y}{2}) \\ \cos x + \cos y &= 2 \cos(\frac{x + y}{2})\cos(\frac{x - y}{2}) \\ \cos x - \cos y &= -2 \sin(\frac{x + y}{2})\sin(\frac{x - y}{2}) \end{aligned}sinx±sinycosx+cosycosxcosy=2sin(2x±y)cos(2xy)=2cos(2x+y)cos(2xy)=2sin(2x+y)sin(2xy)

(iii) 积化和差

sin⁡xcos⁡y=12[sin⁡(x−y)+sin⁡(x+y)]cos⁡xcos⁡y=12[cos⁡(x−y)+cos⁡(x+y)]sin⁡xsin⁡y=12[cos⁡(x−y)−cos⁡(x+y)]\begin{aligned} \sin x \cos y &= \frac{1}{2}[\sin(x - y) + \sin(x + y)] \\ \cos x \cos y &= \frac{1}{2}[\cos(x - y) + \cos(x + y)] \\ \sin x \sin y &= \frac{1}{2}[\cos(x - y) - \cos(x + y)] \end{aligned}sinxcosycosxcosysinxsiny=21[sin(xy)+sin(x+y)]=21[cos(xy)+cos(x+y)]=21[cos(xy)cos(x+y)]

III 倍角

(i) 半角

sin⁡(x2)=±1−cos⁡x2cos⁡(x2)=±1+cos⁡x2tan⁡(x2)=±1−cos⁡x1+cos⁡x=sin⁡x1+cos⁡x=1−cos⁡xsin⁡x=csc⁡x−cot⁡x\begin{aligned} \sin(\frac{x}{2}) &= \pm \sqrt{\frac{1-\cos x}{2}} \\ \cos(\frac{x}{2}) &= \pm \sqrt{\frac{1+\cos x}{2}} \\ \tan(\frac{x}{2}) &= \pm \sqrt\frac{1-\cos x}{1+\cos x} &= \frac{\sin x}{1+\cos x} &= \frac{1-\cos x}{\sin x} &= \csc x - \cot x \\ \end{aligned}sin(2x)cos(2x)tan(2x)=±21cosx=±21+cosx=±1+cosx1cosx=1+cosxsinx=sinx1cosx=cscxcotx

(ii) 二倍角

sin⁡2x=2sin⁡xcos⁡xcos⁡2x=cos⁡2x−sin⁡2x=2cos⁡2x−1=1−2sin⁡2xtan⁡2x=2tan⁡x1−tan⁡2x\begin{aligned} \sin 2x &= 2\sin x\cos x \\ \cos 2x &= \cos^2x-\sin^2x = 2\cos^2x - 1 = 1-2\sin^2x \\ \tan 2x &= \frac{2\tan x}{1-\tan^2x} \\ \end{aligned}sin2xcos2xtan2x=2sinxcosx=cos2xsin2x=2cos2x1=12sin2x=1tan2x2tanx

(iii) N倍角

(cos⁡θ+isin⁡θ)n=cos⁡nθ+isin⁡nθ(\cos\theta + i\sin\theta)^n = \cos n\theta + i\sin n\theta(cosθ+isinθ)n=cosnθ+isinnθ 用二项式定理展开可得

cos⁡(nθ)=∑i=0⌊n/2⌋(−1)iCn2icos⁡n−2iθsin⁡2iθsin⁡(nθ)=∑i=0⌊(n−1)/2⌋(−1)iCn2i+1cos⁡n−2i−1θsin⁡2i+1θ\begin{aligned} \cos(n\theta) &= \sum_{i=0}^{\lfloor{n/2}\rfloor}{(-1)^i C_{n}^{2i}\cos^{n-2i}\theta\sin^{2i}\theta} \\ \sin(n\theta) &= \sum_{i=0}^{\lfloor{(n-1)/2}\rfloor}{(-1)^i C_{n}^{2i+1}\cos^{n-2i-1}\theta\sin^{2i+1}\theta} \\ \end{aligned}cos(nθ)sin(nθ)=i=0n/2(1)iCn2icosn2iθsin2iθ=i=0(n1)/2(1)iCn2i+1cosn2i1θsin2i+1θ

IV 万能

sin⁡x=2u1+u2cos⁡x=1−u21+u2tan⁡x=2u1−u2dx=21+u2duu=tan⁡x2\begin{aligned} \sin x &= \frac{2u}{1+u^2} \\ \cos x &= \frac{1-u^2}{1+u^2} \\ \tan x &= \frac{2u}{1-u^2} \\ \text{d}x &= \frac{2}{1+u^2}\text{d}u \\ u &= \tan\frac x2 \end{aligned}sinxcosxtanxdxu=1+u22u=1+u21u2=1u22u=1+u22du=tan2x

V 级数

f(x)f(x)f(x)在点x=x0x=x_0x=x0具有任意阶导数,则幂级数
∑n=0∞f(n)(x0)n!(x−x0)n \sum_{n=0}^{\infin}{\frac{f^{(n)}(x_0)}{n!}(x-x_0)^n} n=0n!f(n)(x0)(xx0)n

称为f(x)f(x)f(x)在点x0x_0x0处的泰勒级数。
其中x0=0x_0=0x0=0时,级数
∑n=0∞f(n)(0)n!xn \sum_{n=0}^{\infin}{\frac{f^{(n)}(0)}{n!}x^n} n=0n!f(n)(0)xn

称为麦克劳林级数。

sin⁡x=x−x33!+x55!−x77!+⋯ \sin x = x-\frac{x^3}{3!}+\frac{x^5}{5!}-\frac{x^7}{7!}+ \cdots sinx=x3!x3+5!x57!x7+

cos⁡x=1−x22!+x44!−x66!+⋯ \cos x = 1-\frac{x^2}{2!}+\frac{x^4}{4!}-\frac{x^6}{6!}+ \cdots cosx=12!x2+4!x46!x6+

tan⁡x=x+x33+2x515+17x7315+⋯ \tan x = x+\frac{x^3}{3}+\frac{2x^5}{15}+\frac{17x^7}{315}+\cdots tanx=x+3x3+152x5+31517x7+

cot⁡x=1x−x3−x345−2x5945−⋯ \cot x = \frac{1}{x}-\frac{x}{3}-\frac{x^3}{45}-\frac{2x^5}{945}-\cdots cotx=x13x45x39452x5

sec⁡x=1+x22+5x424+61x6720+⋯ \sec x = 1+\frac{x^2}{2}+\frac{5x^4}{24}+\frac{61x^6}{720}+\cdots secx=1+2x2+245x4+72061x6+

csc⁡x=1x+x6+7x3360+31x515120+⋯ \csc x = \frac{1}{x}+\frac{x}{6}+\frac{7x^3}{360}+\frac{31x^5}{15120}+\cdots cscx=x1+6x+3607x3+1512031x5+

arcsin⁡x=x+12x33+1⋅32⋅4x55+1⋅3⋅52⋅4⋅6x77+⋯ \arcsin x = x + \frac{1}{2}\frac{x^3}{3} + \frac{1\cdot3}{2\cdot4}\frac{x^5}{5} + \frac{1\cdot3\cdot5}{2\cdot4\cdot6}\frac{x^7}{7}+\cdots arcsinx=x+213x3+24135x5+2461357x7+

arctan⁡x={x−x33+x55−x77+⋯if ∣x∣<1±π2−1x+13x3−15x5+⋯+if x≥1,−if x≤−1 \arctan x = \begin{cases} x-\cfrac{x^3}{3}+\cfrac{x^5}{5}-\cfrac{x^7}{7}+\cdots &\text{if }{\left|{x}\right|<1} \\ \pm \cfrac{\pi}{2}-\cfrac{1}{x}+\cfrac{1}{3x^3}-\cfrac{1}{5x^5}+\cdots &+\text{if }{x\ge 1},-\text{if }{x\le-1} \end{cases} arctanx=x3x3+5x57x7+±2πx1+3x315x51+if x<1+if x1,if x1

11−x,(∣x∣<1)\cfrac 1{1-x},(|x|<1)1x1,(x<1) 做导数、定积分及换元等操作, 容易得到级数
11−x=1+x+x2+x3+⋯11+x=1−x+x2−x3+⋯11−x2=1+x2+x4+x6+⋯11+x2=1−x2+x4−x6+⋯arth x=x+x33+x55+x77+⋯arctan⁡x=x−x33+x55−x77+⋯ln⁡(1+x)=x−x22+x33−x44+⋯ \frac 1{1-x}=1+x+x^2+x^3+\cdots\\ \frac 1{1+x}=1-x+x^2-x^3+\cdots \\ \frac 1{1-x^2}=1+x^2+x^4+x^6+\cdots \\ \frac 1{1+x^2}=1-x^2+x^4-x^6+\cdots \\ \text{arth }x= x+\frac{x^3}3+\frac{x^5}5+\frac{x^7}7+\cdots \\ \arctan x = x-\cfrac {x^3}3+\cfrac{x^5}5-\frac{x^7}7+\cdots \\ \ln (1+x) = x-\frac{x^2}{2}+\frac{x^3}3-\frac{x^4}4+\cdots 1x1=1+x+x2+x3+1+x1=1x+x2x3+1x21=1+x2+x4+x6+1+x21=1x2+x4x6+arth x=x+3x3+5x5+7x7+arctanx=x3x3+5x57x7+ln(1+x)=x2x2+3x34x4+

VI 微积分

(i) 导数

(sin⁡x)′=cos⁡x(cos⁡x)′=−sin⁡x(tan⁡x)′=1cos⁡2x=sec⁡2x(cot⁡x)′=−1sin⁡2x=−csc⁡2x(sec⁡x)′=sin⁡xcos⁡2x=sec⁡xtan⁡x(csc⁡x)′=−cos⁡xsin⁡2x=−csc⁡xcot⁡x(arcsin⁡x)′=11−x2(arccos⁡x)′=−11−x2(arctan⁡x)′=11+x2(arccot x)′=−11+x2(arcsec x)′=1xx2−1(arccsc x)′=−1xx2−1\begin{aligned} \left(\sin x\right)' &= \cos x \\ \left(\cos x\right)' &= -\sin x \\ \left(\tan x\right)' &= \frac{1}{\cos^2 x} = \sec^2 x \\ \left(\cot x\right)' &= -\frac{1}{\sin^2 x} = -\csc^2 x \\ \left(\sec x\right)' &= \frac{\sin x}{\cos^2 x} = \sec x \tan x \\ \left(\csc x\right)' &= -\frac{\cos x}{\sin^2 x} = -\csc x \cot x \\ \left(\arcsin x\right)' &= \frac{1}{\sqrt{1-x^2}} \\ \left(\arccos x\right)' &= -\frac{1}{\sqrt{1-x^2}} \\ \left(\arctan x\right)' &= \frac{1}{1+x^2} \\ \left(\text{arccot } x\right)' &= -\frac{1}{1+x^2} \\ \left(\text{arcsec } x\right)' &= \frac{1}{x\sqrt{x^2-1}} \\ \left(\text{arccsc } x\right)' &= -\frac{1}{x\sqrt{x^2-1}} \\ \end{aligned}(sinx)(cosx)(tanx)(cotx)(secx)(cscx)(arcsinx)(arccosx)(arctanx)(arccot x)(arcsec x)(arccsc x)=cosx=sinx=cos2x1=sec2x=sin2x1=csc2x=cos2xsinx=secxtanx=sin2xcosx=cscxcotx=1x21=1x21=1+x21=1+x21=xx211=xx211

(ii) 不定积分

∫sin⁡xdx=−cos⁡x+C∫cos⁡xdx=sin⁡x+C∫tan⁡xdx=−ln⁡∣cos⁡x∣+C∫cot⁡xdx=ln⁡∣sin⁡x∣+C∫sec⁡xdx=ln⁡∣sec⁡x+tan⁡x∣+C∫csc⁡xdx=ln⁡∣csc⁡x−cot⁡x∣+C∫arcsin⁡xadx=xarcsin⁡xa+a2−x2+C∫arccos⁡xadx=xarccos⁡xa−a2−x2+C∫arctan⁡xadx=xarctan⁡xa−x2ln⁡(a2+x2)+C\begin{aligned} \int{\sin x\text{d} x} &= -\cos x +C \\ \int{\cos x\text{d} x} &= \sin x +C \\ \int{\tan x\text{d} x} &= -\ln\left|{\cos x}\right| +C \\ \int{\cot x\text{d} x} &= \ln\left|{\sin x}\right| +C \\ \int{\sec x\text{d} x} &= \ln\left|{\sec x + \tan x}\right| +C \\ \int{\csc x\text{d} x} &= \ln\left|{\csc x - \cot x}\right| +C \\ \int{\arcsin \frac{x}{a}\text{d} x} &= x\arcsin \frac{x}{a}+\sqrt{a^2-x^2} +C \\ \int{\arccos \frac{x}{a}\text{d} x} &= x\arccos \frac{x}{a}-\sqrt{a^2-x^2} +C \\ \int{\arctan \frac{x}{a}\text{d} x} &= x\arctan \frac{x}{a}-\frac{x}{2}\ln(a^2+x^2) +C \\ \end{aligned}sinxdxcosxdxtanxdxcotxdxsecxdxcscxdxarcsinaxdxarccosaxdxarctanaxdx=cosx+C=sinx+C=lncosx+C=lnsinx+C=lnsecx+tanx+C=lncscxcotx+C=xarcsinax+a2x2+C=xarccosaxa2x2+C=xarctanax2xln(a2+x2)+C

VII 特殊角

角度弧度sin⁡\sinsincos⁡\coscostan⁡\tantancot⁡\cotcotsec⁡\secseccsc⁡\csccsc
0°±0{0\degree}_{\pm0}0°±00±00_{\pm0}0±0000111000±∞\pm\infin±111±∞\pm\infin±
15°15\degree15°π12\frac\pi{12}12π6−24\frac{\sqrt6-\sqrt2}{4}4626+24\frac{\sqrt6+\sqrt2}{4}46+22−32-\sqrt3232+32+\sqrt32+36−2\sqrt6-\sqrt2626+2\sqrt6+\sqrt26+2
18°18\degree18°π10\frac\pi{10}10π5−14\frac{\sqrt5-1}{4}45110+254\frac{\sqrt{10+2\sqrt5}}{4}410+255−255\sqrt{\frac{5-2\sqrt5}5}55255+25\sqrt{5+2\sqrt5}5+2550−1055\frac{\sqrt{50-10\sqrt5}}55501055+1\sqrt5+15+1
22.5°22.5\degree22.5°π8\frac\pi{8}8π2−22\frac{\sqrt{2-\sqrt2}}{2}2222+22\frac{\sqrt{2+\sqrt{2}}}{2}22+22−1\sqrt2-1212+1\sqrt2+12+14−22\sqrt{4-2\sqrt2}4224+22\sqrt{4+2\sqrt2}4+22
30°30\degree30°π6\frac\pi66π12\frac122132\frac{\sqrt3}{2}2333\frac{\sqrt3}3333\sqrt33233\frac{2\sqrt3}3323222
36°36\degree36°π5\frac\pi55π10−254\frac{\sqrt{10-2\sqrt5}}{4}410255+14\frac{\sqrt5+1}{4}45+15−25\sqrt{5-2\sqrt5}5255+255\sqrt{\frac{5+2\sqrt5}5}55+255−1\sqrt5-15110+255\sqrt{\frac{10+2\sqrt5}5}510+25
45°45\degree45°π4\frac\pi44π22\frac{\sqrt2}22222\frac{\sqrt2}2221111112\sqrt222\sqrt22
54°54\degree54°3π10\frac{3\pi}{10}103π5+14\frac{\sqrt5+1}{4}45+110−254\frac{\sqrt{10-2\sqrt5}}{4}410255+255\sqrt{\frac{5+2\sqrt5}5}55+255−25\sqrt{5-2\sqrt5}52510+255\frac{10+2\sqrt5}5510+255−1\sqrt5-151
60°60\degree60°π3\frac\pi33π32\frac{\sqrt3}{2}2312\frac12213\sqrt3333\frac{\sqrt3}333222233\frac{2\sqrt3}3323
67.5°67.5\degree67.5°3π8\frac{3\pi}883π2+22\frac{\sqrt{2+\sqrt{2}}}{2}22+22−22\frac{\sqrt{2-\sqrt2}}{2}2222+1\sqrt2+12+12−1\sqrt2-1214+22\sqrt{4+2\sqrt2}4+224−22\sqrt{4-2\sqrt2}422
72°72\degree72°2π5\frac{2\pi}552π10+254\frac{\sqrt{10+2\sqrt5}}{4}410+255−14\frac{\sqrt5-1}{4}4515+25\sqrt{5+2\sqrt5}5+255−255\sqrt{\frac{5-2\sqrt5}5}55255+1\sqrt5+15+150−1055\frac{\sqrt{50-10\sqrt5}}5550105
75°75\degree75°5π12\frac{5\pi}{12}125π6+24\frac{\sqrt6+\sqrt2}{4}46+26−24\frac{\sqrt6-\sqrt2}{4}4622+32+\sqrt32+32−32-\sqrt3236+2\sqrt6+\sqrt26+26−2\sqrt6-\sqrt262
90°±0{90\degree}_{\pm0}90°±0π2±0{\frac\pi2}_{\pm0}2π±0111000∓∞\mp\infin000∓∞\mp\infin111

VIII 诱导

sin⁡(x+2kπ)=−sin⁡(−x)=−sin⁡(x±π)=∓cos⁡(x±12π)cos⁡(x+2kπ)=cos⁡(−x)=−cos⁡(x±π)=±sin⁡(x±12π)tan⁡(x+kπ)=−tan⁡(−x)=−cot⁡(x±12π)cot⁡(x+kπ)=−cot⁡(−x)=−tan⁡(x±12π)sec⁡(x+2kπ)=sec⁡(−x)=−sec⁡(x±π)=±csc⁡(x±12π)csc⁡(x+2kπ)=−csc⁡(−x)=−csc⁡(x±π)=∓sec⁡(x±12π)\begin{aligned} \sin(x+2k\pi) &= -\sin(-x) &= -\sin(x \pm \pi) &= \mp\cos(x \pm \frac12\pi) \\ \cos(x+2k\pi) &= \cos(-x) &= -\cos(x\pm\pi) &= \pm\sin(x\pm\frac12\pi) \\ \tan(x+k\pi) &= -\tan(-x) &&= -\cot(x\pm\frac12\pi) \\ \cot(x+k\pi) &= -\cot(-x) &&= -\tan(x\pm\frac12\pi) \\ \sec(x+2k\pi) &= \sec(-x) &= -\sec(x\pm\pi) &= \pm\csc(x\pm\frac12\pi) \\ \csc(x+2k\pi) &= -\csc(-x) &= -\csc(x\pm\pi) &= \mp\sec(x\pm\frac12\pi) \\ \end{aligned}sin(x+2kπ)cos(x+2kπ)tan(x+kπ)cot(x+kπ)sec(x+2kπ)csc(x+2kπ)=sin(x)=cos(x)=tan(x)=cot(x)=sec(x)=csc(x)=sin(x±π)=cos(x±π)=sec(x±π)=csc(x±π)=cos(x±21π)=±sin(x±21π)=cot(x±21π)=tan(x±21π)=±csc(x±21π)=sec(x±21π)

IX 反函数

(i) 余角

arcsin⁡x+arccos⁡x=π2arctan⁡x+arccot x=π2arcsec x+arccsc x=π2\begin{aligned} \arcsin x+\arccos x &= \frac\pi2 \\ \arctan x+\text{arccot } x &= \frac\pi2 \\ \text{arcsec } x+\text{arccsc } x &= \frac\pi2 \end{aligned}arcsinx+arccosxarctanx+arccot xarcsec x+arccsc x=2π=2π=2π

(ii) 负数

arcsin⁡x+arcsin⁡(−x)=0arccos⁡x+arccos⁡(−x)=πarcsec x+arcsec (−x)=πarccsc x+arccsc (−x)=0\begin{aligned} \arcsin x + \arcsin(-x) &= 0 \\ \arccos x + \arccos(-x) &= \pi \\ \text{arcsec } x + \text{arcsec } (-x) &= \pi \\ \text{arccsc } x + \text{arccsc } (-x) &= 0 \\ \end{aligned}arcsinx+arcsin(x)arccosx+arccos(x)arcsec x+arcsec (x)arccsc x+arccsc (x)=0=π=π=0

(iii) 倒数

arcsin⁡x=arccsc 1xarccos⁡x=arcsec 1xarctan⁡x=arccot 1x\begin{aligned} \arcsin x &=\text{arccsc }\frac 1x \\ \arccos x &=\text{arcsec }\frac 1x \\ \arctan x &=\text{arccot }\frac 1x \\ \end{aligned}arcsinxarccosxarctanx=arccsc x1=arcsec x1=arccot x1

### Python 中的数学三角函数 Python 提供了 `math` 库来处理各种数学运算,其中包括常用的三角函数如正弦 (`sin`)、余弦 (`cos`) 和正切 (`tan`) 函数。这些函数默认接受弧度作为输入参数。 #### 使用 `math` 库中的三角函数 为了使用这些函数,首先需要导入 `math` 模块: ```python import math ``` 接着可以直接调用相应的三角函数来进行计算。下面是一些基本的例子: - **正弦函数** 计算给定角度(以弧度表示)的正弦值: ```python angle_in_radians = math.pi / 4 # 45 degrees in radians sine_value = math.sin(angle_in_radians) print(f"The sine of {angle_in_radians} is approximately {sine_value}") ``` - **余弦函数** 同样地,可以计算某个角的余弦值: ```python cosine_value = math.cos(math.pi / 3) # 60 degrees in radians print(f"The cosine of pi/3 ({math.pi / 3}) is approximately {cosine_value}") ``` - **正切函数** 对于正切值,则可以通过如下方式获取: ```python tangent_value = math.tan(math.pi / 6) # 30 degrees in radians print(f"The tangent of pi/6 ({math.pi / 6}) is approximately {tangent_value}") ``` 以上操作均基于弧度单位;如果希望使用角度而非弧度,那么就需要先通过 `math.radians()` 将其转换成弧度形式再传递给上述函数[^1]。 对于反三角函数,比如求反正弦(`asin`)、反余弦(`acos`)以及反正切(`atan`)等,在 `math` 库里也有对应的实现。需要注意的是,由于计算机浮点数精度的原因,某些情况下可能会得到非常接近但不完全等于预期的结果,就像例子中提到的小数值误差一样[^4]。 另外,当涉及到更复杂的图形展示需求时,还可以借助像 Matplotlib 这样的绘图工具包来直观呈现不同区间内的三角波形变化情况[^3]。 最后值得注意的一点是,除了标准的三角函数之外,还有双曲函数及其逆函数也在 `math` 库中有提供支持,例如 sinh, cosh, tanh 等等。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值