Python俄罗斯方块可操纵卷积分类 | 稀疏辨识算法 | 微分方程神经求解器

🎯要点

🎯组卷积网络:实现循环组,可视化组动作,实现提升卷积核,MNIST 训练数据集训练组卷积网络的泛化能力 | 🎯可操控卷积网络:紧群的表征与调和分析,代码验证常规表征结果,不可约表征实现,傅里叶变换对群调和分析,实现可操控卷积网络 | 🎯深度概率模型:给定高维和结构化对单变量响应变量建模,实现分类响应模型,顺序响应模型、序列标记模型 | 🎯深度离散潜变量模型:使用FashionMNIST数据集,实现伯努利分布的乘积,实现均匀分类分布,测试先验分布,实现条件概率分布 | 🎯流生成模型 | 🎯超参数调优和多GPU编程 | 🎯贝叶斯神经网络实现 | 🎯非线性动力系统稀疏辨识算法 | 🎯偏微分方程神经网络求解器 | 🎯常微分方程神经网络求解器

🎯语言模型:Python发票合同 | 解缠注意力语言模型

🎯非线性系统:Julia和Python蛛网图轨道图庞加莱截面曲面确定性非线性系统

🍇Python俄罗斯方块可操纵卷积分类

方块,有时也被称为四块、方块,骨牌或四格,是所有已知的俄罗斯方块游戏中使用的方块。它们有七种形状,都可以旋转然后放下。方块的面积都是四个方格。在某些俄罗斯方块游戏中,它们的颜色会有所不同。四格骨牌是由四个方块组成的多格骨牌。七个单面四格骨牌分别是 I、O、T、S、Z、J 和 L。

💦使用门实现模型拟合俄罗斯方块数据集

import logging

import torch
from torch_cluster import radius_graph
from torch_geometric.data import Data, DataLoader
from torch_scatter import scatter

def tblock():
    pos = [
        [(0, 0, 0), (0, 0, 1), (1, 0, 0), (1, 1, 0)],  
        [(0, 0, 0), (0, 0, 1), (1, 0, 0), (1, -1, 0)],  
        [(0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 0)],  
        [(0, 0, 0), (0, 0, 1), (0, 0, 2), (0, 0, 3)],  
        [(0, 0, 0), (0, 0, 1), (0, 1, 0), (1, 0, 0)],  
        [(0, 0, 0), (0, 0, 1), (0, 0, 2), (0, 1, 0)],  
        [(0, 0, 0), (0, 0, 1), (0, 0, 2), (0, 1, 1)], 
        [(0, 0, 0), (1, 0, 0), (1, 1, 0), (2, 1, 0)],  
    ]
    pos = torch.tensor(pos, dtype=torch.get_default_dtype())

    labels = torch.tensor(
        [
            [+1, 0, 0, 0, 0, 0, 0],  
            [-1, 0, 0, 0, 0, 0, 0],  
            [0, 1, 0, 0, 0, 0, 0],  
            [0, 0, 1, 0, 0, 0, 0],  
            [0, 0, 0, 1, 0, 0, 0], 
            [0, 0, 0, 0, 1, 0, 0],  
            [0, 0, 0, 0, 0, 1, 0],  
            [0, 0, 0, 0, 0, 0, 1],  
        ],
        dtype=torch.get_default_dtype(),
    )


def mean_std(name, x) -> None:
    print(f"{name} \t{x.mean():.1f} ± ({x.var(0).mean().sqrt():.1f}|{x.std():.1f})")


class Convolution(torch.nn.Module):
    def __init__(self, irreps_in, irreps_sh, irreps_out, num_neighbors) -> None:
        super().__init__()

        self.num_neighbors = num_neighbors

        tp = FullyConnectedTensorProduct(
            irreps_in1=irreps_in,
            irreps_in2=irreps_sh,
            irreps_out=irreps_out,
            internal_weights=False,
            shared_weights=False,
        )
        self.fc = FullyConnectedNet([3, 256, tp.weight_numel], torch.relu)
        self.tp = tp
        self.irreps_out = self.tp.irreps_out

    def forward(self, node_features, edge_src, edge_dst, edge_attr, edge_scalars) -> torch.Tensor:
        weight = self.fc(edge_scalars)
        edge_features = self.tp(node_features[edge_src], edge_attr, weight)
        node_features = scatter(edge_features, edge_dst, dim=0).div(self.num_neighbors**0.5)
        return node_features


class Network(torch.nn.Module):
    def __init__(self) -> None:
        super().__init__()
        self.num_neighbors = 3.8 
        self.irreps_sh = o3.Irreps.spherical_harmonics(3)

        irreps = self.irreps_sh

        # First layer with gate
        gate = Gate(
            "16x0e + 16x0o",
            [torch.relu, torch.abs], 
            "8x0e + 8x0o + 8x0e + 8x0o",
            [torch.relu, torch.tanh, torch.relu, torch.tanh],  # gates (scalars)
            "16x1o + 16x1e",  
        )
        self.conv = Convolution(irreps, self.irreps_sh, gate.irreps_in, self.num_neighbors)
        self.gate = gate
        irreps = self.gate.irreps_out

        # Final layer
        self.final = Convolution(irreps, self.irreps_sh, "0o + 6x0e", self.num_neighbors)
        self.irreps_out = self.final.irreps_out

 

💦多项式拟合俄罗斯方块数据集

import logging

import torch
from torch_cluster import radius_graph
from torch_geometric.data import Data, DataLoader
from torch_scatter import scatter



def tblock():
    pos = [
        [(0, 0, 0), (0, 0, 1), (1, 0, 0), (1, 1, 0)],  
        [(0, 0, 0), (0, 0, 1), (1, 0, 0), (1, -1, 0)],  
        [(0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 0)],  
        [(0, 0, 0), (0, 0, 1), (0, 0, 2), (0, 0, 3)],  
        [(0, 0, 0), (0, 0, 1), (0, 1, 0), (1, 0, 0)],  
        [(0, 0, 0), (0, 0, 1), (0, 0, 2), (0, 1, 0)],  
        [(0, 0, 0), (0, 0, 1), (0, 0, 2), (0, 1, 1)],  
        [(0, 0, 0), (1, 0, 0), (1, 1, 0), (2, 1, 0)],  
    ]
    pos = torch.tensor(pos, dtype=torch.get_default_dtype())

    labels = torch.tensor(
        [
            [+1, 0, 0, 0, 0, 0, 0],  
            [-1, 0, 0, 0, 0, 0, 0],  
            [0, 1, 0, 0, 0, 0, 0],  
            [0, 0, 1, 0, 0, 0, 0],  
            [0, 0, 0, 1, 0, 0, 0], 
            [0, 0, 0, 0, 1, 0, 0],  
            [0, 0, 0, 0, 0, 1, 0],  
            [0, 0, 0, 0, 0, 0, 1],  
        ],
        dtype=torch.get_default_dtype(),
    )

    pos = torch.einsum("zij,zaj->zai", o3.rand_matrix(len(pos)), pos)

    dataset = [Data(pos=pos) for pos in pos]
    data = next(iter(DataLoader(dataset, batch_size=len(dataset))))

    return data, labels


class InvariantPolynomial(torch.nn.Module):
    def __init__(self) -> None:
        super().__init__()
        self.irreps_sh: o3.Irreps = o3.Irreps.spherical_harmonics(3)
        irreps_mid = o3.Irreps("64x0e + 24x1e + 24x1o + 16x2e + 16x2o")
        irreps_out = o3.Irreps("0o + 6x0e")

        self.tp1 = FullyConnectedTensorProduct(
            irreps_in1=self.irreps_sh,
            irreps_in2=self.irreps_sh,
            irreps_out=irreps_mid,
        )
        self.tp2 = FullyConnectedTensorProduct(
            irreps_in1=irreps_mid,
            irreps_in2=self.irreps_sh,
            irreps_out=irreps_out,
        )
        self.irreps_out = self.tp2.irreps_out

    def forward(self, data) -> torch.Tensor:
        num_neighbors = 2  
        num_nodes = 4  # typical number of nodes

        edge_src, edge_dst = radius_graph(x=data.pos, r=1.1, batch=data.batch)  
        edge_vec = data.pos[edge_src] - data.pos[edge_dst]
        edge_sh = o3.spherical_harmonics(
            l=self.irreps_sh,
            x=edge_vec,
            normalize=False,  
            normalization="component",
        )

        node_features = scatter(edge_sh, edge_dst, dim=0).div(num_neighbors**0.5)

        edge_features = self.tp1(node_features[edge_src], edge_sh)
        node_features = scatter(edge_features, edge_dst, dim=0).div(num_neighbors**0.5)

        edge_features = self.tp2(node_features[edge_src], edge_sh)
        node_features = scatter(edge_features, edge_dst, dim=0).div(num_neighbors**0.5)

        return scatter(node_features, data.batch, dim=0).div(num_nodes**0.5)


def main() -> None:
    data, labels = tetris()
    f = InvariantPolynomial()

    optim = torch.optim.Adam(f.parameters(), lr=1e-2)

    # == Train ==
    for step in range(200):
        pred = f(data)
        loss = (pred - labels).pow(2).sum()

        optim.zero_grad()
        loss.backward()
        optim.step()

        if step % 10 == 0:
            accuracy = pred.round().eq(labels).all(dim=1).double().mean(dim=0).item()
            print(f"epoch {step:5d} | loss {loss:<10.1f} | {100 * accuracy:5.1f}% accuracy")

def test() -> None:
    data, labels = tetris()
    f = InvariantPolynomial()

    pred = f(data)
    loss = (pred - labels).pow(2).sum()
    loss.backward()

    rotated_data, _ = tetris()
    error = f(rotated_data) - f(data)
    assert error.abs().max() < 1e-5

👉参阅一:计算思维

👉参阅二:亚图跨际

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值