[机器学习笔记] 什么是损失函数?

机器学习模型关于单个样本的预测值与真实值的差称为损失。损失越小,模型越好,如果预测值与真实值相等,就是没有损失。
用于计算损失的函数称为损失函数。模型每一次预测的好坏用损失函数来度量。

常用的损失函数有以下几种(引用自李航的《统计学习方法》)
1. 0-1损失函数
0-1损失函数
二类分类任务中,预测值与真实值不同,就是预测错误,则损失是1;
预测值与真实值相等,就是预测正确,损失是 0,就是没有损失。

2. 平方损失函数
平方损失函数
预测值与真实值的差的平方。预测误差越大,损失越大。好理解吧。

3. 绝对损失函数

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值