目录
pytorch判断NaN
You can always leverage the fact that nan != nan
:
data = torch.tensor([1, 2, np.nan]) tensor([ 1., 2., nan.]) data[data != data] tensor([ 0, 0, 1], dtype=torch.uint8) if ciou[ciou != ciou].size(0)>0: print('nan')
With pytorch 0.4 there is also torch.isnan:
>>> torch.isnan(x)
tensor([ 0, 0, 1], dtype=torch.uint8)
这个待测试:
4.数据本身,是否存在Nan,可以用numpy.any(numpy.i