头部 CT 图像三维重建

开放数据集

开放数据集:http://headctstudy.qure.ai/dataset

其中某个样本:CQ500CT181
在这里插入图片描述

数据处理

导入可能要用的包

import pydicom
import os
import matplotlib.pyplot as plt
%matplotlib inline
import SimpleITK as sitk
from PIL import Image
import numpy as np
import cv2

原始数据为 dicom 格式

path = 'CQ500CT181 CQ500CT181/Unknown Study/CT 0.625mm'
files = os.listdir(path)
print(files)

[‘CT000000.dcm’, ‘CT000001.dcm’, ‘CT000002.dcm’, ‘CT000003.dcm’, ‘CT000004.dcm’, ‘CT000005.dcm’, ‘CT000006.dcm’, ‘CT000007.dcm’, ‘CT000008.dcm’, ‘CT000009.dcm’, ‘CT000010.dcm’, ‘CT000011.dcm’, ‘CT000012.dcm’, ‘CT000013.dcm’, ‘CT000014.dcm’, ‘CT000015.dcm’, ‘CT000016.dcm’, …

读入所有切片 dcm

slices = []
for i in files:
    ds = sitk.ReadImage(os.path.join(path,i))
    img_array = sitk.GetArrayFromImage(ds)
    img = np.asarray(Image.fromarray(img_array[0]))
    slices.append(img)

展示

def plot_ct_scan(scan, num_column=4, jump=1):
    num_slices = len(scan)
    num_row = (num_slices//jump + num_column - 1) // num_column
    f, plots = plt.subplots(num_row, num_column, figsize=(num_column*5, num_row*5))
    for i in range(0, num_row*num_column):
        plot = plots[i % num_column] if num_row == 1 else plots[i // num_column, i % num_column]        
        plot.axis('off')
        if i < num_slices//jump:
            plot.imshow(scan[i*jump], cmap=plt.cm.bone)
    plt.show()

plot_ct_scan(slices, num_column=4, jump=5)

结果如上图

查看 HU 值分布

plt.hist(np.array(slices).flatten(), bins=100)
plt.show()

在这里插入图片描述

设置 HU 窗口

随便取了个 500-1000 之间

def clip(image, hu_min, hu_max):
    image[image < hu_min] = hu_min
    image[image > hu_max] = hu_max
    return image
    
for i,s in enumerate(slices):
    if(i%5==0):
        sample = np.array(s)
        sample = clip(sample, 500, 1000) 
        plt.imshow(sample, cmap='bone')
        plt.show()

在这里插入图片描述

3D 重建

先转化成 mhd 格式

 
# 路径和列表声明
PathDicom = "CQ500CT181 CQ500CT181/Unknown Study/CT 0.625mm"  # 与python文件同一个目录下的文件夹,存储dicom文件
SaveRawDicom = "SaveRaw/"     # 与python文件同一个目录下的文件夹,用来存储mhd文件和raw文件
lstFilesDCM = []
 
# 将PathDicom文件夹下的dicom文件地址读取到lstFilesDCM中
for dirName, subdirList, fileList in os.walk(PathDicom):
	for filename in fileList:
		if ".dcm" in filename.lower():  # 判断文件是否为dicom文件
# 			print(filename)
			lstFilesDCM.append(os.path.join(dirName, filename))  # 加入到列表中
 
# 第一步:将第一张图片作为参考图片,并认为所有图片具有相同维度
RefDs = pydicom.read_file(lstFilesDCM[0])  # 读取第一张dicom图片
 
# 第二步:得到dicom图片所组成3D图片的维度
ConstPixelDims = (int(RefDs.Rows), int(RefDs.Columns), len(lstFilesDCM)) # ConstPixelDims是一个元组
 
# 第三步:得到x方向和y方向的Spacing并得到z方向的层厚
ConstPixelSpacing = (float(RefDs.PixelSpacing[0]), float(RefDs.PixelSpacing[1]), float(RefDs.SliceThickness))
 
# 第四步:得到图像的原点
Origin = RefDs.ImagePositionPatient
 
# 根据维度创建一个numpy的三维数组,并将元素类型设为:pixel_array.dtype
# ArrayDicom = numpy.zeros(ConstPixelDims, dtype=RefDs.pixel_array.dtype)  # array is a numpy array
ArrayDicom = numpy.zeros(ConstPixelDims, dtype=numpy.int)
 
# 第五步:遍历所有的dicom文件,读取图像数据,存放在numpy数组中
i = 0
for i, filenameDCM in enumerate(lstFilesDCM):
    ds = sitk.ReadImage(filenameDCM)
# 	ArrayDicom[:, :, lstFilesDCM.index(filenameDCM)] = ds.pixel_array
    image_array = sitk.GetArrayFromImage(ds)
    ArrayDicom[:, :, i] = numpy.asarray(Image.fromarray(image_array[0]))
#     cv2.imwrite("out_" + str(i) + ".png", ArrayDicom[:, :, i])

 
# 第六步:对numpy数组进行转置,即把坐标轴(x,y,z)变换为(z,y,x),这样是dicom存储文件的格式,即第一个维度为z轴便于图片堆叠
ArrayDicom = numpy.transpose(ArrayDicom, (2, 0, 1))
 
# 第七步:将现在的numpy数组通过SimpleITK转化为mhd和raw文件
sitk_img = SimpleITK.GetImageFromArray(ArrayDicom, isVector=False)
sitk_img.SetSpacing(ConstPixelSpacing)
sitk_img.SetOrigin(Origin)
print(sitk_img)
sitk.WriteImage(sitk_img, os.path.join(SaveRawDicom, "sample" + ".mhd"))

生成的 mhd 文件内容

Image (000001DD4793FAC0)
  RTTI typeinfo:   class itk::Image<int,3>
  Reference Count: 1
  Modified Time: 230791
  Debug: Off
  Object Name: 
  Observers: 
    none
  Source: (none)
  Source output name: (none)
  Release Data: Off
  Data Released: False
  Global Release Data: Off
  PipelineMTime: 0
  UpdateMTime: 0
  RealTimeStamp: 0 seconds 
  LargestPossibleRegion: 
    Dimension: 3
    Index: [0, 0, 0]
    Size: [512, 512, 256]
  BufferedRegion: 
    Dimension: 3
    Index: [0, 0, 0]
    Size: [512, 512, 256]
  RequestedRegion: 
    Dimension: 3
    Index: [0, 0, 0]
    Size: [512, 512, 256]
  Spacing: [0.488281, 0.488281, 0.625]
  Origin: [-125, -128.362, 168.249]
  Direction: 
1 0 0
0 1 0
0 0 1

  IndexToPointMatrix: 
0.488281 0 0
0 0.488281 0
0 0 0.625

  PointToIndexMatrix: 
2.048 0 0
0 2.048 0
0 0 1.6

  Inverse Direction: 
1 0 0
0 1 0
0 0 1

  PixelContainer: 
    ImportImageContainer (000001DD47868E60)
      RTTI typeinfo:   class itk::ImportImageContainer<unsigned __int64,int>
      Reference Count: 1
      Modified Time: 230788
      Debug: Off
      Object Name: 
      Observers: 
        none
      Pointer: 000001DD2002C040
      Container manages memory: true
      Size: 67108864
      Capacity: 67108864

利用 vtk 展示

import vtk

def show(fileName):
    colors = vtk.vtkNamedColors()

    # colors.SetColor("SkinColor", [255, 125, 64, 255])
    colors.SetColor("SkinColor", [0, 255, 0, 200])
    colors.SetColor("BkgColor", [51, 77, 102, 255])

    # Create the renderer, the render window, and the interactor. The renderer
    # draws into the render window, the interactor enables mouse- and
    # keyboard-based interaction with the data within the render window.
    #
    aRenderer = vtk.vtkRenderer()
    renWin = vtk.vtkRenderWindow()
    renWin.AddRenderer(aRenderer)

    iren = vtk.vtkRenderWindowInteractor()
    iren.SetRenderWindow(renWin)

    # The following reader is used to read a series of 2D slices (images)
    # that compose the volume. The slice dimensions are set, and the
    # pixel spacing. The data Endianness must also be specified. The reader
    # uses the FilePrefix in combination with the slice number to construct
    # filenames using the format FilePrefix.%d. (In this case the FilePrefix
    # is the root name of the file: quarter.)
    reader = vtk.vtkMetaImageReader()
    reader.SetFileName(fileName)

    # An isosurface, or contour value of 500 is known to correspond to the
    # skin of the patient.
    # The triangle stripper is used to create triangle strips from the
    # isosurface these render much faster on many systems.
    skinExtractor = vtk.vtkMarchingCubes()
    skinExtractor.SetInputConnection(reader.GetOutputPort())
    skinExtractor.SetValue(0, 500)

    skinStripper = vtk.vtkStripper()
    skinStripper.SetInputConnection(skinExtractor.GetOutputPort())

    skinMapper = vtk.vtkPolyDataMapper()
    skinMapper.SetInputConnection(skinStripper.GetOutputPort())
    skinMapper.ScalarVisibilityOff()

    skin = vtk.vtkActor()
    skin.SetMapper(skinMapper)
    skin.GetProperty().SetDiffuseColor(colors.GetColor3d("SkinColor"))
    skin.GetProperty().SetSpecular(.3)
    skin.GetProperty().SetSpecularPower(20)
    skin.GetProperty().SetOpacity(.5)

    # An isosurface, or contour value of 1150 is known to correspond to the
    # bone of the patient.
    # The triangle stripper is used to create triangle strips from the
    # isosurface these render much faster on may systems.
    boneExtractor = vtk.vtkMarchingCubes()
    boneExtractor.SetInputConnection(reader.GetOutputPort())
    boneExtractor.SetValue(0, 1150)

    boneStripper = vtk.vtkStripper()
    boneStripper.SetInputConnection(boneExtractor.GetOutputPort())

    boneMapper = vtk.vtkPolyDataMapper()
    boneMapper.SetInputConnection(boneStripper.GetOutputPort())
    boneMapper.ScalarVisibilityOff()

    bone = vtk.vtkActor()
    bone.SetMapper(boneMapper)
    bone.GetProperty().SetDiffuseColor(colors.GetColor3d("Ivory"))

    # An outline provides context around the data.
    #
    outlineData = vtk.vtkOutlineFilter()
    outlineData.SetInputConnection(reader.GetOutputPort())

    mapOutline = vtk.vtkPolyDataMapper()
    mapOutline.SetInputConnection(outlineData.GetOutputPort())

    outline = vtk.vtkActor()
    outline.SetMapper(mapOutline)
    outline.GetProperty().SetColor(colors.GetColor3d("Black"))

    # It is convenient to create an initial view of the data. The FocalPoint
    # and Position form a vector direction. Later on (ResetCamera() method)
    # this vector is used to position the camera to look at the data in
    # this direction.
    aCamera = vtk.vtkCamera()
    aCamera.SetViewUp(0, 0, -1)
    aCamera.SetPosition(0, -1, 0)
    aCamera.SetFocalPoint(0, 0, 0)
    aCamera.ComputeViewPlaneNormal()
    aCamera.Azimuth(30.0)
    aCamera.Elevation(30.0)

    # Actors are added to the renderer. An initial camera view is created.
    # The Dolly() method moves the camera towards the FocalPoint,
    # thereby enlarging the image.
    aRenderer.AddActor(outline)
    aRenderer.AddActor(skin)
    aRenderer.AddActor(bone)
    aRenderer.SetActiveCamera(aCamera)
    aRenderer.ResetCamera()
    aCamera.Dolly(1.5)

    # Set a background color for the renderer and set the size of the
    # render window (expressed in pixels).
    aRenderer.SetBackground(colors.GetColor3d("BkgColor"))
    renWin.SetSize(640, 480)

    # Note that when camera movement occurs (as it does in the Dolly()
    # method), the clipping planes often need adjusting. Clipping planes
    # consist of two planes: near and far along the view direction. The
    # near plane clips out objects in front of the plane the far plane
    # clips out objects behind the plane. This way only what is drawn
    # between the planes is actually rendered.
    aRenderer.ResetCameraClippingRange()

    # Initialize the event loop and then start it.
    iren.Initialize()
    iren.Start()

show('SaveRaw/sample.mhd')

在这里插入图片描述
可以看见抹茶骷髅的后脑勺上有两条显著的骨缝

评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

颹蕭蕭

白嫖?

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值