迷宫路径搜索

本文详细介绍了在迷宫中寻找最短路径的算法,包括基本的搜索算法和更高效的A*搜索算法。通过定义迷宫网格、起始点、目标点和移动成本,算法能够探索所有可能的路径并找到到达目标的最短路线。A*搜索算法通过引入启发式函数,显著减少了搜索步骤,提高了寻路效率。

定义迷宫

grid = [[0, 0, 1, 0, 0, 0],
        [0, 0, 0, 0, 0, 0],
        [0, 0, 1, 0, 1, 0],
        [0, 0, 1, 0, 1, 0],
        [0, 0, 1, 0, 1, 0]]
init = [0, 0]
goal = [len(grid)-1, len(grid[0])-1]
cost = 1

delta = [[-1, 0 ], # go up
         [ 0, -1], # go left
         [ 1, 0 ], # go down
         [ 0, 1 ]] # go right

delta_name = ['^', '<', 'v', '>']

返回探索过程

grid = [[0, 1, 0, 0, 0, 0],
        [0, 1, 0, 0, 0, 0],
        [0, 1, 0, 0, 0, 0],
        [0, 1, 0, 0, 0, 0],
        [0, 0, 0, 0, 1, 0]]
        
def search(grid,init,goal,cost,heuristic):
    # ----------------------------------------
    # modify the code below
    # ----------------------------------------
    closed = [[0 for col in range(len(grid[0]))] for row in range(len(grid))]
    closed[init[0]][init[1]] = 1

    expand = [[-1 for col in range(len(grid[0]))] for row in range(len(grid))]
    action = [[-1 for col in range(len(grid[0]))] for row in range(len(grid))]

    x = init[0]
    y = init[1]
    g = 0

    open = [[g, x, y]]

    found = False  # flag that is set when search is complete
    resign = False # flag set if we can't find expand
    count = 0
    
    while not found and not resign:
        if len(open) == 0:
            resign = True
            return "Fail"
        else:
            open.sort()
            open.reverse()
            next = open.pop()
            x = next[1]
            y = next[2]
            g = next[0]
            expand[x][y] = count
            count += 1
            
            if x == goal[0] and y == goal[1]:
                found = True
            else:
                for i in range(len(delta)):
                    x2 = x + delta[i][0]
                    y2 = y + delta[i][1]
                    if x2 >= 0 and x2 < len(grid) and y2 >=0 and y2 < len(grid[0]):
                        if closed[x2][y2] == 0 and grid[x2][y2] == 0:
                            g2 = g + cost
                            open.append([g2, x2, y2])
                            closed[x2][y2] = 1

    return expand

-1 表示未探索区域,其它值表示探索的步数 。

[[0, -1, 14, 18, -1, -1],
 [1, -1, 11, 15, 19, -1],
 [2, -1,  9, 12, 16, 20],
 [3, -1,  7, 10, 13, 17],
 [4,  5,  6,  8, -1, 21]]

显示最优路径

# -----------
# returns a shortest path as follows:
# 
# [['>', 'v', ' ', ' ', ' ', ' '],
#  [' ', '>', '>', '>', '>', 'v'],
#  [' ', ' ', ' ', ' ', ' ', 'v'],
#  [' ', ' ', ' ', ' ', ' ', 'v'],
#  [' ', ' ', ' ', ' ', ' ', '*']]
#
# Where '>', '<', '^', and 'v' refer to right, left, 
# up, and down motions. Note that the 'v' should be 
# lowercase. '*' should mark the goal cell.
#
# ----------

def search(grid,init,goal,cost):
    # ----------------------------------------
    # modify code below
    # ----------------------------------------
    closed = [[0 for row in range(len(grid[0]))] for col in range(len(grid))]
    closed[init[0]][init[1]] = 1
    action = [[' ' for row in range(len(grid[0]))] for col in range(len(grid))]
    opt_path = [[' ' for row in range(len(grid[0]))] for col in range(len(grid))]

    x = init[0]
    y = init[1]
    g = 0

    open = [[g, x, y]]

    found = False  # flag that is set when search is complete
    resign = False # flag set if we can't find action

    while not found and not resign:
        if len(open) == 0:
            resign = True
            return 'fail'
        else:
            open.sort()
            open.reverse()
            next = open.pop()  # 每次弹出 cost 最小的待选点
            x = next[1]
            y = next[2]
            g = next[0]
            
            if x == goal[0] and y == goal[1]:
                found = True
            else:
                for i in range(len(delta)):
                    x2 = x + delta[i][0]
                    y2 = y + delta[i][1]
                    if x2 >= 0 and x2 < len(grid) and y2 >=0 and y2 < len(grid[0]):
                        if closed[x2][y2] == 0 and grid[x2][y2] == 0:
                            g2 = g + cost
                            open.append([g2, x2, y2])
                            closed[x2][y2] = 1
                            action[x2][y2] = i
    x,y = goal[0],goal[1]
    opt_path[x][y] = '*'
    while not (x==init[0] and y==init[1]):
        i = action[x][y]
        x -= delta[i][0]
        y -= delta[i][1]
        opt_path[x][y] = delta_name[i]        

    return opt_path # make sure you return the shortest path

[['v', ' ', ' ', ' ', ' ', ' '],
 ['v', ' ', ' ', ' ', ' ', ' '],
 ['v', ' ', ' ', ' ', ' ', ' '],
 ['v', ' ', '>', '>', '>', 'v'],
 ['>', '>', '^', ' ', ' ', '*']]

A* 搜索

heuristic = [[9, 8, 7, 6, 5, 4],
             [8, 7, 6, 5, 4, 3],
             [7, 6, 5, 4, 3, 2],
             [6, 5, 4, 3, 2, 1],
             [5, 4, 3, 2, 1, 0]]
def search(grid,init,goal,cost,heuristic):
    # ----------------------------------------
    # modify the code below
    # ----------------------------------------
    closed = [[0 for col in range(len(grid[0]))] for row in range(len(grid))]
    closed[init[0]][init[1]] = 1

    expand = [[-1 for col in range(len(grid[0]))] for row in range(len(grid))]
    action = [[-1 for col in range(len(grid[0]))] for row in range(len(grid))]

    x = init[0]
    y = init[1]
    g = 0 
    h = heuristic[x][y]
    f = g + h

    open = [[f, g, h, x, y]]

    found = False  # flag that is set when search is complete
    resign = False # flag set if we can't find expand
    count = 0
    
    while not found and not resign:
        if len(open) == 0:
            resign = True
            return "Fail"
        else:
            open.sort()
            open.reverse()
            next = open.pop()
            x = next[3]
            y = next[4]
            g = next[1]
            expand[x][y] = count
            count += 1
            
            if x == goal[0] and y == goal[1]:
                found = True
            else:
                for i in range(len(delta)):
                    x2 = x + delta[i][0]
                    y2 = y + delta[i][1]
                    if x2 >= 0 and x2 < len(grid) and y2 >=0 and y2 < len(grid[0]):
                        if closed[x2][y2] == 0 and grid[x2][y2] == 0:
                            g2 = g + cost 
                            h2 = heuristic[x2][y2]
                            f2 = g2 +h2
                            open.append([f2, g2, h2, x2, y2])
                            closed[x2][y2] = 1

    return expand

如下所示,A* 算法只需要 12 步就搜索到了终点,而原始搜索算法花了 21 步。

[[0, -1, -1, -1, -1, -1],
 [1, -1, -1, -1, -1, -1],
 [2, -1, -1, -1, -1, -1],
 [3, -1,  8,  9, 10, 11],
 [4,  5,  6,  7, -1, 12]]
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

颹蕭蕭

白嫖?

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值