总体均值 μ=1N∑xi\mu = \frac{1}{N}\sum x_iμ=N1∑xi, 总体方差 σ2=1N∑i(xi−μ)2\sigma^2 = \frac{1}{N}\sum_i (x_i - \mu)^2σ2=N1∑i(xi−μ)2
样本均值 xˉ=1n∑xi\bar{x} = \frac{1}{n}\sum x_ixˉ=n1∑xi, 样本方差 S2=1n−1∑i(xi−xˉ)2S^2 = \frac{1}{n-1}\sum_i (x_i - \bar{x})^2S2=n−11∑i(xi−xˉ)2
证明:
E(S2)=E(1n−1∑i=1n(xi−xˉ)2)=1n−1E(∑i=1n(xi−xˉ)2)=1n−1E(∑i=1n(xi2−2xixˉ+xˉ2))=1n−1E(∑i=1nxi2−nxˉ2)=1n−1(∑i=1nE(xi2)−nE(xˉ2))=1n−1(∑i=1nE(xi2)−nE(xˉ2))
\begin{array}{ll}
E(S^2) &= E\left(\frac{1}{n-1}\sum_{i=1}^n (x_i - \bar{x})^2 \right) \\\\
&=\frac{1}{n-1} E\left(\sum_{i=1}^n (x_i - \bar{x})^2 \right) \\\\
&= \frac{1}{n-1} E\left(\sum_{i=1}^n (x_i^2 - 2x_i\bar{x} + \bar{x}^2) \right) \\\\
&= \frac{1}{n-1} E\left(\sum_{i=1}^n x_i^2 - n\bar{x}^2 \right) \\\\
&= \frac{1}{n-1} \left(\sum_{i=1}^n E(x_i^2) - nE(\bar{x}^2) \right) \\\\
&= \frac{1}{n-1} \left(\sum_{i=1}^n E(x_i^2) - nE(\bar{x}^2) \right) \\\\
\end{array}
E(S2)=E(n−11∑i=1n(xi−xˉ)2)=n−11E(∑i=1n(xi−xˉ)2)=n−11E(∑i=1n(xi2−2xixˉ+xˉ2))=n−11E(∑i=1nxi2−nxˉ2)=n−11(∑i=1nE(xi2)−nE(xˉ2))=n−11(∑i=1nE(xi2)−nE(xˉ2))
又
E(xi2)=D(xi)+E(xi)2=σ2+μ2
E(x_i^2) = D(x_i) + E(x_i)^2 = \sigma^2 + \mu^2\\
E(xi2)=D(xi)+E(xi)2=σ2+μ2E(xˉ2)=D(xˉ)+E(xˉ)2=σ2n+μ2
E(\bar{x}^2) = D(\bar{x}) + E(\bar{x})^2 = \frac{\sigma^2}{n} + \mu^2\\
E(xˉ2)=D(xˉ)+E(xˉ)2=nσ2+μ2
所以
E(S2)=1n−1(∑i=1nE(xi2)−nE(xˉ2))=1n−1(n(σ2+μ2)−n(σ2n+μ2))=σ2
\begin{array}{ll}
E(S^2) &= \frac{1}{n-1} \left(\sum_{i=1}^n E(x_i^2) - nE(\bar{x}^2) \right) \\\\
&= \frac{1}{n-1} \left(n (\sigma^2 + \mu^2) - n(\frac{\sigma^2}{n} + \mu^2) \right) \\\\
&=\sigma^2
\end{array}
E(S2)=n−11(∑i=1nE(xi2)−nE(xˉ2))=n−11(n(σ2+μ2)−n(nσ2+μ2))=σ2
证毕。
本文详细解析了样本方差作为总体方差无偏估计的数学证明过程,通过逐步推导展示了样本方差公式如何确保估计的准确性,是理解统计学中关键概念不可或缺的阅读材料。
449

被折叠的 条评论
为什么被折叠?



