KdV方程的出处: Dr. D. J. Korteweg & Dr. G. de Vries (1895) XLI. On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 39:240, 422-443, DOI: 10.1080/14786449508620739
@article{doi:10.1080/14786449508620739,
author = { Dr. D. J. Korteweg and Dr. G. de Vries },
title = {XLI. On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves},
journal = {The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science},
volume = {39},
number = {240},
pages = {422-443},
year = {1895},
publisher = {Taylor & Francis},
doi = {10.1080/14786449508620739},
URL = {https://doi.org/10.1080/14786449508620739},
eprint = {https://doi.org/10.1080/14786449508620739},
}
∂ u ∂ t + u ∂ u ∂ x + ∂ 3 u ∂ x 3 = 0 , \frac{\partial u}{\partial t} + u\frac{\partial u}{\partial x} + \frac{\partial^3 u}{\partial x^3} = 0, ∂t∂u+u∂x∂u+∂x3∂3u=0,
瞬态波形
当固定 t t t 时, ∂ u ∂ t = 0 \frac{\partial u}{\partial t} = 0 ∂t∂u=0. 得
u ∂ u ∂ x + ∂ 3 u ∂ x 3 = 0 , (1) u\frac{\partial u}{\partial x} + \frac{\partial^3 u}{\partial x^3} = 0, \tag{1} u∂x∂u+∂x3∂3u=0,(1)
对(1)关于 x x x积分,或者
∂ ∂ x ( 1 2 u 2 + ∂ 2 u ∂ x 2 ) = 0 , \frac{\partial }{\partial x}\left( \frac{1}{2}u^2+ \frac{\partial^2 u}{\partial x^2} \right)= 0,

本文深入探讨了KdV方程的历史起源及其数学解析过程,详细解释了瞬态波形下KdV方程的积分变换,以及通过傅里叶变换求解偏微分方程的方法,并附带Matlab仿真代码。
最低0.47元/天 解锁文章
123





