傅里叶变换求解 KdV 方程

本文深入探讨了KdV方程的历史起源及其数学解析过程,详细解释了瞬态波形下KdV方程的积分变换,以及通过傅里叶变换求解偏微分方程的方法,并附带Matlab仿真代码。

KdV方程的出处: Dr. D. J. Korteweg & Dr. G. de Vries (1895) XLI. On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 39:240, 422-443, DOI: 10.1080/14786449508620739

@article{doi:10.1080/14786449508620739,
	author = { Dr.   D. J.   Korteweg  and  Dr.   G.   de Vries },
	title = {XLI. On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves},
	journal = {The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science},
	volume = {39},
	number = {240},
	pages = {422-443},
	year  = {1895},
	publisher = {Taylor & Francis},
	doi = {10.1080/14786449508620739},
	URL = {https://doi.org/10.1080/14786449508620739},
	eprint = {https://doi.org/10.1080/14786449508620739},
}

∂ u ∂ t + u ∂ u ∂ x + ∂ 3 u ∂ x 3 = 0 , \frac{\partial u}{\partial t} + u\frac{\partial u}{\partial x} + \frac{\partial^3 u}{\partial x^3} = 0, tu+uxu+x33u=0,

瞬态波形

当固定 t t t 时, ∂ u ∂ t = 0 \frac{\partial u}{\partial t} = 0 tu=0. 得
u ∂ u ∂ x + ∂ 3 u ∂ x 3 = 0 , (1) u\frac{\partial u}{\partial x} + \frac{\partial^3 u}{\partial x^3} = 0, \tag{1} uxu+x33u=0,(1)
对(1)关于 x x x积分,或者
∂ ∂ x ( 1 2 u 2 + ∂ 2 u ∂ x 2 ) = 0 , \frac{\partial }{\partial x}\left( \frac{1}{2}u^2+ \frac{\partial^2 u}{\partial x^2} \right)= 0,

评论 5
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

颹蕭蕭

白嫖?

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值