51Nod2670还原竞赛图思维+传递闭包

该博客讨论了一种图论问题,涉及完全无向图中边的定向。给定每个节点的出度,任务是定向每条边使得所有节点都能互相到达。代码示例展示了如何确保定向的唯一性和正确性,最终计算可达点对的数量。

题目

2670 还原竞赛图

一张完全无向图,给出每个点的出度,要对每条边定向,求可以互相到达的点对数量。保证答案存在且唯一。

求解

题目保证答案存在且唯一,那么就保证了 s u m a i = n ∗ ( n − 1 ) 2 sum_{a_i}=\frac {n*(n-1)}{2} sumai=2n(n1)

需要注意的是,对某条边定向的时候,需要考虑,这样会不会导致后面的点的出度无法满足。

代码

#include <bits/stdc++.h>
using namespace std;

const int N = 110;
int out[N];
int mp[N][N];
bool vis[N][N];
int in[N];

int main()
{
    int n;
    cin >> n;
    for (int i = 1; i <= n; i++)
        cin >> out[i];
    for (int i = 1; i <= n; i++)
    {
        int tmp = out[i];
        for (int j = 1; tmp && j <= n; j++)
        {
            if (i == j)
                continue;
            if (!vis[i][j] && (n - 1) - in[j] - out[j] > 0)
            //保证这条边还没用过,并且用了也不会导致后面的边无法使用
            {
                in[j]++;
                tmp--;
                mp[i][j] = 1;
                vis[i][j] = vis[j][i] = 1;
            }
        }
    }
    for (int i = 1; i <= n; i++)
        mp[i][i] = 1;
    for (int k = 1; k <= n; k++)
        for (int i = 1; i <= n; i++)
            for (int j = 1; j <= n; j++)
                if (mp[i][k] && mp[k][j])
                    mp[i][j] = 1;
    int ans = 0;
    for (int i = 1; i <= n; i++)
        for (int j = 1; j <= n; j++)
            ans += mp[i][j];
    cout << ans << endl;
    return 0;
}
【Koopman】遍历论、动态模态分解和库普曼算子谱特性的计算研究(Matlab代码实现)内容概要:本文围绕【Koopman】遍历论、动态模态分解和库普曼算子谱特性的计算研究展开,重点介绍基于Matlab的代码实现方法。文章系统阐述了遍历理论的基本概念、动态模态分解(DMD)的数学原理及其与库普曼算子谱特性之间的内在联系,展示了如何通过数值计算手段分析非线性动力系统的演化行为。文中提供了完整的Matlab代码示例,涵盖数据驱动的模态分解、谱分析及可视化过程,帮助读者理解并复现相关算法。同时,文档还列举了多个相关的科研方向和技术应用场景,体现出该方法在复杂系统建模与分析中的广泛适用性。; 适合人群:具备一定动力系统、线性代数与数值分析基础,熟悉Matlab编程,从事控制理论、流体力学、信号处理或数据驱动建模等领域研究的研究生、博士生及科研人员。; 使用场景及目标:①深入理解库普曼算子理论及其在非线性系统分析中的应用;②掌握动态模态分解(DMD)算法的实现与优化;③应用于流体动力学、气候建模、生物系统、电力系统等领域的时空模态提取与预测;④支撑高水平论文复现与科研项目开发。; 阅读建议:建议读者结合Matlab代码逐段调试运行,对照理论推导加深理解;推荐参考文中提及的相关研究方向拓展应用场景;鼓励在实际数据上验证算法性能,并尝试改进与扩展算法功能。
本系统采用微信小程序作为前端交互界面,结合Spring Boot与Vue.js框架实现后端服务及管理后台的构建,形成一套完整的电子商务解决方案。该系统架构支持单一商户独立运营,亦兼容多商户入驻的平台模式,具备高度的灵活性与扩展性。 在技术实现上,后端以Java语言为核心,依托Spring Boot框架提供稳定的业务逻辑处理与数据接口服务;管理后台采用Vue.js进行开发,实现了直观高效的操作界面;前端微信小程序则为用户提供了便捷的移动端购物体验。整套系统各模块间紧密协作,功能链路完整闭环,已通过严格测试与优化,符合商业应用的标准要求。 系统设计注重业务场景的全面覆盖,不仅包含商品展示、交易流程、订单处理等核心电商功能,还集成了会员管理、营销工具、数据统计等辅助模块,能够满足不同规模商户的日常运营需求。其多店铺支持机制允许平台方对入驻商户进行统一管理,同时保障各店铺在品牌展示、商品销售及客户服务方面的独立运作空间。 该解决方案强调代码结构的规范性与可维护性,遵循企业级开发标准,确保了系统的长期稳定运行与后续功能迭代的可行性。整体而言,这是一套技术选型成熟、架构清晰、功能完备且可直接投入商用的电商平台系统。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

hesorchen

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值