如果P = NP 则 NP = co-NP.

证明:

P = co-P

如果P = NP 这时co-NP = co-P = P。

因此得证。


这个公式有个非常好的推论

如果NP != co-NP then P != NP.(逆否命题)

因此,我们可以通过NP != co-NP得到P != NP。

我正在编辑【python】代码,遇到了 【画图结果出错】 ,请帮我检查并改正错误点。我的原始代码如下: 【import numpy as np from scipy.optimize import newton import matplotlib.pyplot as plt from matplotlib.ticker import MultipleLocator # ========================== # CO₂物性参数设置 # ========================== Tc = 304.13 # 临界温度 (K) Pc = 7.38e6 # 临界压力 (Pa) omega = 0.225 # 偏心因子 R = 8.314 # 气体常数 (J/(mol·K)) M = 44.01e-3 # 摩尔质量 (kg/mol) # ========================== # PR状态方程相关函数 # ========================== def pr_parameters(T): """计算PR方程参数a和b""" k = 0.37464 + 1.54226 * omega - 0.26992 * omega ** 2 alpha = (1 + k * (1 - np.sqrt(T / Tc))) ** 2 a = 0.45724 * (R ** 2 * Tc ** 2) / Pc * alpha b = 0.07780 * R * Tc / Pc return a, b def pr_equation(Z, T, P): """定义PR方程的三次方形式""" a, b = pr_parameters(T) A = a * P / (R ** 2 * T ** 2) B = b * P / (R * T) return Z ** 3 - (1 - B) * Z ** 2 + (A - 3 * B ** 2 - 2 * B) * Z - (A * B - B ** 2 - B ** 3) def calculate_density(T, P): """计算CO₂密度 (kg/m³)""" try: # 牛顿迭代法求解压缩因子 Z_initial_guess = 0.6 # 超临界流体典型初始值 Z = newton(pr_equation, Z_initial_guess, args=(T, P)) molar_volume = Z * R * T / P # 摩尔体积 (m³/mol) return M / molar_volume except: return np.nan # 处理不收敛情况 # ========================== # 敏感性分析参数设置 # ========================== # 温度范围 (转换为开尔文) T_min = 31 + 273.15 # 304.15 K T_max = 100 + 273.15 # 373.15 K P_min = 7e6 # 7 MPa (转换为Pa) P_max = 30e6 # 30 MPa # 网格参数 n_points = 50 # 网格密度 delta = 0.1 # 差分步长 (K/MPa) # 生成计算网格 T_values = np.linspace(T_min, T_max, n_points) P_values = np.linspace(P_min, P_max, n_points) TT, PP = np.meshgrid(T_values, P_values) # ========================== # 主计算循环 # ========================== d_rho_dT = np.zeros_like(TT) d_rho_dP = np.zeros_like(TT) rho_grid = np.zeros_like(TT) print("开始计算密度场...") for i in range(n_points): for j in range(n_points): T = TT[i, j] P = PP[i, j] # 计算基础密度 rho = calculate_density(T, P) rho_grid[i, j] = rho # 温度敏感性 (中心差分) if T + delta <= T_max and T - delta >= T_min: rho_Tp = calculate_density(T + delta, P) rho_Tm = calculate_density(T - delta, P) d_rho_dT[i, j] = (rho_Tp - rho_Tm) / (2 * delta) # 压力敏感性 (中心差分) if P + delta * 1e6 <= P_max and P - delta * 1e6 >= P_min: rho_Pp = calculate_density(T, P + delta * 1e6) rho_Pm = calculate_density(T, P - delta * 1e6) d_rho_dP[i, j] = (rho_Pp - rho_Pm) / (2 * delta * 1e6) print("计算完成,开始绘图...") # ========================== # 可视化设置 # ========================== plt.rcParams.update({'font.size': 12, 'font.family': 'Arial'}) extent = [T_min - 273.15, T_max - 273.15, P_min / 1e6, P_max / 1e6] # 温度敏感性热图 plt.figure(figsize=(12, 5)) plt.subplot(121) cf = plt.contourf(TT - 273.15, PP / 1e6, np.abs(d_rho_dT), levels=50, cmap='viridis') plt.colorbar(cf, label='|∂ρ/∂T| (kg/m³/K)') plt.contour(TT - 273.15, PP / 1e6, np.abs(d_rho_dT), colors='k', linewidths=0.5, levels=10) plt.scatter(Tc - 273.15, Pc / 1e6, c='red', marker='*', s=100, label='Critical Point') plt.xlabel('Temperature (°C)') plt.ylabel('Pressure (MPa)') plt.title('Temperature Sensitivity') plt.grid(alpha=0.3) plt.legend() # 压力敏感性热图 plt.subplot(122) cf = plt.contourf(TT - 273.15, PP / 1e6, np.abs(d_rho_dP), levels=50, cmap='plasma') plt.colorbar(cf, label='|∂ρ/∂P| (kg/m³/MPa)') plt.contour(TT - 273.15, PP / 1e6, np.abs(d_rho_dP), colors='k', linewidths=0.5, levels=10) plt.scatter(Tc - 273.15, Pc / 1e6, c='red', marker='*', s=100, label='Critical Point') plt.xlabel('Temperature (°C)') plt.ylabel('Pressure (MPa)') plt.title('Pressure Sensitivity') plt.grid(alpha=0.3) plt.legend() plt.tight_layout() plt.show() # ========================== # 高敏感区域识别 # ========================== # 识别敏感性高于平均值的区域 threshold_T = 0.8 * np.nanmax(np.abs(d_rho_dT)) threshold_P = 0.8 * np.nanmax(np.abs(d_rho_dP)) high_sens_T = np.where(np.abs(d_rho_dT) > threshold_T) high_sens_P = np.where(np.abs(d_rho_dP) > threshold_P) print("\n高温度敏感性区域特征:") print(f"- 温度范围: {np.min(TT[high_sens_T] - 273.15):.1f} ~ {np.max(TT[high_sens_T] - 273.15):.1f} °C") print(f"- 压力范围: {np.min(PP[high_sens_T] / 1e6):.1f} ~ {np.max(PP[high_sens_T] / 1e6):.1f} MPa") print("\n高压力敏感性区域特征:") print(f"- 温度范围: {np.min(TT[high_sens_P]-273.15):.1f} ~ {np.max(TT[high_sens_P] - 273.15):.1f} °C") print(f"- 压力范围: {np.min(PP[high_sens_P] / 1e6):.1f} ~ {np.max(PP[high_sens_P] / 1e6):.1f} MPa") # ========================== # 新增:折线图绘制函数 # ========================== def plot_sensitivity_profiles(): # 设置固定参数 fixed_pressures = [7.38, 10, 15, 20] # MPa (临界压力和其他典型值) fixed_temperatures = [35, 50, 60] # °C # 创建画布 plt.figure(figsize=(15, 10)) # =================================================================== # 子图1:固定压力时温度敏感性随温度变化 # =================================================================== plt.subplot(2, 2, 1) for P_fixed in fixed_pressures: # 找到最接近的压力索引 P_idx = np.argmin(np.abs(P_values / 1e6 - P_fixed)) # 提取对应压力下的数据 T_profile = TT[:, P_idx] - 273.15 # 转换为°C sens_profile = np.abs(d_rho_dT[:, P_idx]) # 过滤无效值 valid = ~np.isnan(sens_profile) plt.plot(T_profile[valid], sens_profile[valid], lw=2, marker='o', markersize=5, label=f'P={P_fixed} MPa') plt.xlabel('Temperature (°C)') plt.ylabel('|∂ρ/∂T| (kg/m³/K)') plt.title('Temperature Sensitivity at Fixed Pressures') plt.grid(alpha=0.3) plt.legend() # =================================================================== # 子图2:固定温度时压力敏感性随压力变化 # =================================================================== plt.subplot(2, 2, 2) for T_fixed in fixed_temperatures: # 找到最接近的温度索引 T_idx = np.argmin(np.abs(T_values - (T_fixed + 273.15))) # 提取对应温度下的数据 P_profile = PP[T_idx, :] / 1e6 # 转换为MPa sens_profile = np.abs(d_rho_dP[T_idx, :]) # 过滤无效值 valid = ~np.isnan(sens_profile) plt.plot(P_profile[valid], sens_profile[valid], lw=2, marker='s', markersize=5, label=f'T={T_fixed}°C') plt.xlabel('Pressure (MPa)') plt.ylabel('|∂ρ/∂P| (kg/m³/MPa)') plt.title('Pressure Sensitivity at Fixed Temperatures') plt.grid(alpha=0.3) plt.legend() # =================================================================== # 子图3:固定压力时压力敏感性随温度变化(交叉分析) # =================================================================== plt.subplot(2, 2, 3) for P_fixed in fixed_pressures: P_idx = np.argmin(np.abs(P_values / 1e6 - P_fixed)) T_profile = TT[:, P_idx] - 273.15 sens_profile = np.abs(d_rho_dP[:, P_idx]) valid = ~np.isnan(sens_profile) plt.semilogy(T_profile[valid], sens_profile[valid], # 对数坐标 lw=2, linestyle='--', label=f'P={P_fixed} MPa') plt.xlabel('Temperature (°C)') plt.ylabel('|∂ρ/∂P| (kg/m³/MPa)') plt.title('Pressure Sensitivity vs Temperature (log scale)') plt.grid(alpha=0.3, which='both') plt.legend() # =================================================================== # 子图4:固定温度时温度敏感性随压力变化(交叉分析) # =================================================================== plt.subplot(2, 2, 4) for T_fixed in fixed_temperatures: T_idx = np.argmin(np.abs(T_values - (T_fixed + 273.15))) P_profile = PP[T_idx, :] / 1e6 sens_profile = np.abs(d_rho_dT[T_idx, :]) valid = ~np.isnan(sens_profile) plt.semilogy(P_profile[valid], sens_profile[valid], lw=2, linestyle='-.', label=f'T={T_fixed}°C') plt.xlabel('Pressure (MPa)') plt.ylabel('|∂ρ/∂T| (kg/m³/K)') plt.title('Temperature Sensitivity vs Pressure (log scale)') plt.grid(alpha=0.3, which='both') plt.legend() plt.tight_layout() plt.show() # ========================== # 执行绘图 # ========================== print("\n生成折线图...") plot_sensitivity_profiles()】
最新发布
05-11
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值