【差分约束】 P3275 [SCOI2011] 糖果|省选-

本文涉及知识点

【数学 线性代数】差分约束

P3275 [SCOI2011] 糖果

题目描述

幼儿园里有 N N N 个小朋友, lxhgww \text{lxhgww} lxhgww 老师现在想要给这些小朋友们分配糖果,要求每个小朋友都要分到糖果。但是小朋友们也有嫉妒心,总是会提出一些要求,比如小明不希望小红分到的糖果比他的多,于是在分配糖果的时候, lxhgww \text{lxhgww} lxhgww 需要满足小朋友们的 K K K 个要求。幼儿园的糖果总是有限的, lxhgww \text{lxhgww} lxhgww 想知道他至少需要准备多少个糖果,才能使得每个小朋友都能够分到糖果,并且满足小朋友们所有的要求。

输入格式

输入的第一行是两个整数 N N N K K K。接下来 K K K 行,表示这些点需要满足的关系,每行 3 3 3 个数字, X X X A A A B B B

  • 如果 X = 1 X=1 X=1, 表示第 A A A 个小朋友分到的糖果必须和第 B B B 个小朋友分到的糖果一样多;
  • 如果 X = 2 X=2 X=2, 表示第 A A A 个小朋友分到的糖果必须少于第 B B B 个小朋友分到的糖果;
  • 如果 X = 3 X=3 X=3, 表示第 A A A 个小朋友分到的糖果必须不少于第 B B B 个小朋友分到的糖果;
  • 如果 X = 4 X=4 X=4, 表示第 A A A 个小朋友分到的糖果必须多于第 B B B 个小朋友分到的糖果;
  • 如果 X = 5 X=5 X=5, 表示第 A A A 个小朋友分到的糖果必须不多于第 B B B 个小朋友分到的糖果;

输出格式

输出一行,表示 lxhgww \text{lxhgww} lxhgww 老师至少需要准备的糖果数,如果不能满足小朋友们的所有要求,就输出 − 1 -1 1

输入输出样例 #1

输入 #1

5 7
1 1 2
2 3 2
4 4 1
3 4 5
5 4 5
2 3 5
4 5 1

输出 #1

11

说明/提示

对于 30 % 30\% 30% 的数据,保证 N ≤ 100 N\leq100 N100

对于 100 % 100\% 100% 的数据,保证 N ≤ 100000 N\leq100000 N100000

对于所有的数据,保证 K ≤ 100000 , 1 ≤ X ≤ 5 , 1 ≤ A , B ≤ N K\leq100000, 1\leq X\leq5, 1\leq A, B\leq N K100000,1X5,1A,BN


upd 2022.7.6 \text{upd 2022.7.6} upd 2022.7.6:新添加 21 21 21Hack 数据

P3275 差分约束 缩点 拓扑排序

利用差分约束求解,解很可能有负数。 令糖果最少得小朋友得到的糖果数量是x1。所有的糖果数 -x1+1。这样糖果数是整数,且最少。
x=1,即 A-B <=0 B - A <=0
x=2 A-B <0 即 A-B <=-1
x=3 A-B >=0 即 B-A <=0
x=4 A-B >0 即B-A<0 即B-A<=-1
x=5即 A-B <= 0
最多1e5个点,边权最多1.故1e6就是极大值。
时间复杂度:O(nn) 时间超过限制

缩点

如果有环,一定是0环或负环。负环返回-1。0环缩点。
并集查找uf记录锁在一起的点。
DFS查环。DFS(pars,pw,w,cur)
cur是当前子树的根,pars记录cur所有祖先 pw[i]记录cur的祖先i到根的边权和,1表示没有祖先i。w表示根到i的边权和。
函数外变量vis记录vis[i]是否访问。
如果vis[cur]为真,返回。
如果pw[cur]不是1,遇到环。
{
w-pw 不是0,本题答案-1。程序结束。
利用pars变量将两个cur直接所有的点和cur在uf中连通。本次DFS结束。
}
pars增加cur pw[cur]= w
枚举临接点next ,边权ew DFS(pars,pw,w+ew,next)
pars.pop_back() pw[cur]=1
vis[cur]=true
时间复杂度:O(M) M是边数。没个边访问一次。
只有第一次DFS(cur)时,会遍历cur的后续节点。如果cur已经访问完毕,vis[cur]为真;如果正在访问cur,pw[cur]不为1;这两种情况都不访问后效节点。

缩点性质

i,j,k等是0环,锁点成i。j,k的临接点变成i的临接点。
性质一:缩点后,不会让原来不连通的点连通。缩点后u → \rightarrow i → \rightarrow v,则缩点前u → \rightarrow → \rightarrow v。
性质二:缩点后,不会让原来连通的点不连通。缩点前u → \rightarrow → \rightarrow v,缩点后u → \rightarrow i → \rightarrow v。
性质三:缩点后,不会产生新环,证明类似性质一。
性质四:缩点后,被缩点的没有边。不影响top排序的正确性。
性质四:缩点会产生重边,不影响top排序的正确性。
性质五:缩点或产生自环。这个影响top排序,必须忽略。

求最小正整数解

利用拓扑排序,求最短路。便是差分约束的一个解。我们求的是最小正整数解。如果div[j] < 1,则将dis[j]即其前置节点全部+(1-dis[j])。如果i有多个直接或间接的后置节点,则dis[i]只需要增加最大值。暴力增加的时间复杂度也是O(nn)。按拓扑序可以到O(n)。

拓扑排序

不求解,直接拓扑序。初始,出度为0的i,dis[i]=1。删除出度为0的点,不断迭代处理新出度为0的点。边权为0,前置节点不小于后者节点;边权为-1,前置节点至少比后续节点大1。

错误解放

求了差分约束的一个解后,求最小值iMin,所有数+(1-iMin)。错误示例:1比2多,2比3多,1比4多。最短距离为:0,-1,-2,-1,全部+3后,就是3,2,1,2,正解是3,2,1,1。

0负1BFS

队列中有cur和cur-1,必须先处理cur-1才是最短路。遇到0边时cur-1,遇到-1边时cur-2。队列中就有了cur,cur-1,cur-2。不符合01BFS的条件。

代码

核心代码

#include <iostream>
#include <sstream>
#include <vector>
#include<map>
#include<unordered_map>
#include<set>
#include<unordered_set>
#include<string>
#include<algorithm>
#include<functional>
#include<queue>
#include <stack>
#include<iomanip>
#include<numeric>
#include <math.h>
#include <climits>
#include<assert.h>
#include<cstring>
#include<list>

#include <bitset>
using namespace std;

template<class T1, class T2>
std::istream& operator >> (std::istream& in, pair<T1, T2>& pr) {
	in >> pr.first >> pr.second;
	return in;
}

template<class T1, class T2, class T3 >
std::istream& operator >> (std::istream& in, tuple<T1, T2, T3>& t) {
	in >> get<0>(t) >> get<1>(t) >> get<2>(t);
	return in;
}

template<class T1, class T2, class T3, class T4 >
std::istream& operator >> (std::istream& in, tuple<T1, T2, T3, T4>& t) {
	in >> get<0>(t) >> get<1>(t) >> get<2>(t) >> get<3>(t);
	return in;
}

template<class T = int>
vector<T> Read() {
	int n;
	scanf("%d", &n);
	vector<T> ret(n);
	for (int i = 0; i < n; i++) {
		cin >> ret[i];
	}
	return ret;
}

template<class T = int>
vector<T> Read(int n) {
	vector<T> ret(n);
	for (int i = 0; i < n; i++) {
		cin >> ret[i];
	}
	return ret;
}

template<int N = 1'000'000>
class COutBuff
{
public:
	COutBuff() {
		m_p = puffer;
	}
	template<class T>
	void write(T x) {
		int num[28], sp = 0;
		if (x < 0)
			*m_p++ = '-', x = -x;

		if (!x)
			*m_p++ = 48;

		while (x)
			num[++sp] = x % 10, x /= 10;

		while (sp)
			*m_p++ = num[sp--] + 48;
		AuotToFile();
	}
	void writestr(const char* sz) {
		strcpy(m_p, sz);
		m_p += strlen(sz);
		AuotToFile();
	}
	inline void write(char ch)
	{
		*m_p++ = ch;
		AuotToFile();
	}
	inline void ToFile() {
		fwrite(puffer, 1, m_p - puffer, stdout);
		m_p = puffer;
	}
	~COutBuff() {
		ToFile();
	}
private:
	inline void AuotToFile() {
		if (m_p - puffer > N - 100) {
			ToFile();
		}
	}
	char  puffer[N], * m_p;
};

template<int N = 1'000'000>
class CInBuff
{
public:
	inline CInBuff() {}
	inline CInBuff<N>& operator>>(char& ch) {
		FileToBuf();
		ch = *S++;
		return *this;
	}
	inline CInBuff<N>& operator>>(int& val) {
		FileToBuf();
		int x(0), f(0);
		while (!isdigit(*S))
			f |= (*S++ == '-');
		while (isdigit(*S))
			x = (x << 1) + (x << 3) + (*S++ ^ 48);
		val = f ? -x : x; S++;//忽略空格换行		
		return *this;
	}
	inline CInBuff& operator>>(long long& val) {
		FileToBuf();
		long long x(0); int f(0);
		while (!isdigit(*S))
			f |= (*S++ == '-');
		while (isdigit(*S))
			x = (x << 1) + (x << 3) + (*S++ ^ 48);
		val = f ? -x : x; S++;//忽略空格换行
		return *this;
	}
	template<class T1, class T2>
	inline CInBuff& operator>>(pair<T1, T2>& val) {
		*this >> val.first >> val.second;
		return *this;
	}
	template<class T1, class T2, class T3>
	inline CInBuff& operator>>(tuple<T1, T2, T3>& val) {
		*this >> get<0>(val) >> get<1>(val) >> get<2>(val);
		return *this;
	}
	template<class T1, class T2, class T3, class T4>
	inline CInBuff& operator>>(tuple<T1, T2, T3, T4>& val) {
		*this >> get<0>(val) >> get<1>(val) >> get<2>(val) >> get<3>(val);
		return *this;
	}
	template<class T = int>
	inline CInBuff& operator>>(vector<T>& val) {
		int n;
		*this >> n;
		val.resize(n);
		for (int i = 0; i < n; i++) {
			*this >> val[i];
		}
		return *this;
	}
	template<class T = int>
	vector<T> Read(int n) {
		vector<T> ret(n);
		for (int i = 0; i < n; i++) {
			*this >> ret[i];
		}
		return ret;
	}
	template<class T = int>
	vector<T> Read() {
		vector<T> ret;
		*this >> ret;
		return ret;
	}
private:
	inline void FileToBuf() {
		const int canRead = m_iWritePos - (S - buffer);
		if (canRead >= 100) { return; }
		if (m_bFinish) { return; }
		for (int i = 0; i < canRead; i++)
		{
			buffer[i] = S[i];//memcpy出错			
		}
		m_iWritePos = canRead;
		buffer[m_iWritePos] = 0;
		S = buffer;
		int readCnt = fread(buffer + m_iWritePos, 1, N - m_iWritePos, stdin);
		if (readCnt <= 0) { m_bFinish = true; return; }
		m_iWritePos += readCnt;
		buffer[m_iWritePos] = 0;
		S = buffer;
	}
	int m_iWritePos = 0; bool m_bFinish = false;
	char buffer[N + 10], * S = buffer;
};

template<class T = int, T iDef = INT_MAX / 2>
class CDisNegativeRing //贝尔曼-福特算法
{
public:
	bool Dis(int N, vector<tuple<int, int, int>> edgeFromToW, int start) {
		vector<T> pre(N, iDef);
		pre[start] = 0;
		for (int t = 0; t < N; t++) {
			auto cur = pre;
			for (const auto& [u, v, w] : edgeFromToW) {
				cur[v] = min(cur[v], pre[u] + w);
			}
			if (t + 1 == N) {
				for (int i = 0; i < N; i++) {
					if (pre[i] != cur[i]) { return false; }
				}
			}
			pre.swap(cur);
		}
		m_vDis = pre;
		return true;
	}
	vector<T> m_vDis;
};

class CUnionFind
{
public:
	CUnionFind(int iSize) :m_vNodeToRegion(iSize)
	{
		for (int i = 0; i < iSize; i++)
		{
			m_vNodeToRegion[i] = i;
		}
		m_iConnetRegionCount = iSize;
	}
	CUnionFind(vector<vector<int>>& vNeiBo) :CUnionFind(vNeiBo.size())
	{
		for (int i = 0; i < vNeiBo.size(); i++) {
			for (const auto& n : vNeiBo[i]) {
				Union(i, n);
			}
		}
	}
	int GetConnectRegionIndex(int iNode)
	{
		int& iConnectNO = m_vNodeToRegion[iNode];
		if (iNode == iConnectNO)
		{
			return iNode;
		}
		return iConnectNO = GetConnectRegionIndex(iConnectNO);
	}
	void Union(int iNode1, int iNode2)
	{
		const int iConnectNO1 = GetConnectRegionIndex(iNode1);
		const int iConnectNO2 = GetConnectRegionIndex(iNode2);
		if (iConnectNO1 == iConnectNO2)
		{
			return;
		}
		m_iConnetRegionCount--;
		if (iConnectNO1 > iConnectNO2)
		{
			UnionConnect(iConnectNO1, iConnectNO2);
		}
		else
		{
			UnionConnect(iConnectNO2, iConnectNO1);
		}
	}

	bool IsConnect(int iNode1, int iNode2)
	{
		return GetConnectRegionIndex(iNode1) == GetConnectRegionIndex(iNode2);
	}
	int GetConnetRegionCount()const
	{
		return m_iConnetRegionCount;
	}
	vector<int> GetNodeCountOfRegion()//各联通区域的节点数量
	{
		const int iNodeSize = m_vNodeToRegion.size();
		vector<int> vRet(iNodeSize);
		for (int i = 0; i < iNodeSize; i++)
		{
			vRet[GetConnectRegionIndex(i)]++;
		}
		return vRet;
	}
	std::unordered_map<int, vector<int>> GetNodeOfRegion()
	{
		std::unordered_map<int, vector<int>> ret;
		const int iNodeSize = m_vNodeToRegion.size();
		for (int i = 0; i < iNodeSize; i++)
		{
			ret[GetConnectRegionIndex(i)].emplace_back(i);
		}
		return ret;
	}
private:
	void UnionConnect(int iFrom, int iTo)
	{
		m_vNodeToRegion[iFrom] = iTo;
	}
	vector<int> m_vNodeToRegion;//各点所在联通区域的索引,本联通区域任意一点的索引,为了增加可理解性,用最小索引
	int m_iConnetRegionCount;
};

class CMyTopSort
{
public:
	//入度为0的是叶子节点
	long long TopSort(const int N, const vector<tuple<int, int, int>>& edge, CUnionFind& uf) {
		m_vDis.assign(N, 1);
		m_vDis[0] = 1;
		vector<int> out(N);
		vector<vector<pair<int, int>>> neiBoBack(N);
		for (const auto& [u, v, w] : edge) {
			const int v1 = uf.GetConnectRegionIndex(v);
			const int u1 = uf.GetConnectRegionIndex(u);
			if (u1 == v1) { continue; }
			neiBoBack[v1].emplace_back(u1, -w);
			out[u1]++;
		}
		queue<int> que;
		for (int i = 1; i < N; i++) {
			if (0 == out[i]) {
				if (i != uf.GetConnectRegionIndex(i)) { continue; }
				que.emplace(i);
				m_vDis[i] = 1;
			}
		}
		while (que.size()) {
			const auto cur = que.front();
			que.pop();
			for (const auto& [next, w] : neiBoBack[cur]) {
				m_vDis[next] = max(m_vDis[next], m_vDis[cur] + w);
				if (0 == --out[next]) {
					que.emplace(next);
				}
			}
		}
		long long ans = 0;
		vector<int> tmp = { 1 };
		for (int i = 1; i < N; i++) {
			ans += m_vDis[uf.GetConnectRegionIndex(i)];
			tmp.emplace_back(m_vDis[uf.GetConnectRegionIndex(i)]);
		}
		return ans;
	}
	vector<int> m_vDis;
};
class Solution {
public:
	long long Ans(int N, const vector<tuple<int, int, int>> ope) {
		vector<tuple<int, int, int>> edge;
		for (const auto& [x, a, b] : ope) {
			if (1 == x) {//x=1,即 A-B <=0 B - A <=0
				edge.emplace_back(a, b, 0);
				edge.emplace_back(b, a, 0);
			}
			else if (2 == x) {//x = 2 A - B < 0 即 A - B <= -1
				edge.emplace_back(b, a, -1);
			}
			else if (3 == x) {//x=3 A-B >=0 即 B-A <=0
				edge.emplace_back(a, b, 0);
			}
			else if (4 == x) {//x=4 A-B >0 即B-A<0 即B-A<=-1
				edge.emplace_back(a, b, -1);
			}
			else if (5 == x) {//x = 5即 A - B <= 0
				edge.emplace_back(b, a, 0);
			}
		}
		for (int i = 1; i <= N; i++) {
			edge.emplace_back(0, i, 0);
		}
		vector<vector<pair<int, int>>> neiBo(N + 1);
		for (const auto& [u, v, w] : edge) {
			neiBo[u].emplace_back(v, w);
		}
		CUnionFind uf(N + 1);
		{
			vector<bool> vis(N + 1);
			bool bErr = false;
			function<void(vector<int>&, vector<int>&, int, int)> DFS = [&](vector<int>& pars, vector<int>& pw, int w, int cur) {
				if (vis[cur]) { return; }
				if (1 != pw[cur]) {//找到环
					if (0 != w - pw[cur]) { bErr = true; return; }
					for (int i = pars.size() - 1; pars[i] != cur; i--) {
						uf.Union(cur, pars[i]);
					}
					return;
				}
				pars.emplace_back(cur);
				pw[cur] = w;
				for (const auto& [next, ew] : neiBo[cur]) {
					DFS(pars, pw, w + ew, next);
				}
				pw[cur] = 1;
				pars.pop_back();
				vis[cur] = true;
			};
			vector<int> pars, pw(N + 1, 1);
			DFS(pars, pw, 0, 0);
			if (bErr) { return -1; }
		}
		return CMyTopSort().TopSort(N + 1, edge, uf);
	}
};

int main() {
#ifdef _DEBUG
	freopen("a.in", "r", stdin);
#endif // DEBUG	
	ios::sync_with_stdio(0);
	int n, m ;
	cin >> n >> m ;	
	auto ope = Read<tuple<int, int,int>>(m);
#ifdef _DEBUG		
	//printf("n=%d", n);
	//Out(ks, "ks=");
	//Out(ope, ",ope=");
	//Out(edge2, ",edge2=");
	/*Out(que, "que=");*/
#endif // DEBUG	
	auto res = Solution().Ans(n,ope);
	cout << res;
	return 0;
}

单元测试

	int n;
		vector<tuple<int, int, int>> ope;
		TEST_METHOD(TestMethod1)
		{
			n = 5, ope = { {1,1,2},{2,3,2},{4,4,1},{3,4,5},{5,4,5},{2,3,5},{4,5,1} };
			auto res = Solution().Ans(n, ope);
			AssertEx(11LL, res);
		}
		TEST_METHOD(TestMethod2)
		{
			n = 4, ope = { {1,3,2},{2,2,4},{5,1,3},{3,4,2},{3,2,3},{4,3,1},{5,1,4} };
			auto res = Solution().Ans(n, ope);
			AssertEx(8LL, res);
		}
		TEST_METHOD(TestMethod3)
		{
			n = 100000, ope.resize(n-1);
			for (int i = 1; i < n; i++) {
				ope[i - 1] = { 2,i,i + 1 };
			}
			auto res = Solution().Ans(n, ope);
			AssertEx(5000050000LL, res);
		}
		TEST_METHOD(TestMethod4)
		{
			n = 700, ope.resize(n - 1);
			for (int i = 1; i < n; i++) {
				ope[i - 1] = { 1,i,i + 1 };
			}
			auto res = Solution().Ans(n, ope);
			AssertEx((long long)n, res);
		}
		TEST_METHOD(TestMethod5)
		{
			n = 100000, ope = {};
			auto res = Solution().Ans(n, ope);
			AssertEx((long long)n, res);
		}
		TEST_METHOD(TestMethod6)
		{
			n = 4, ope = { {2,1,2},{2,2,3},{2,1,4} };
			auto res = Solution().Ans(n, ope);
			AssertEx((long long)8, res);
		}

扩展阅读

我想对大家说的话
工作中遇到的问题,可以按类别查阅鄙人的算法文章,请点击《算法与数据汇总》。
学习算法:按章节学习《喜缺全书算法册》,大量的题目和测试用例,打包下载。重视操作
有效学习:明确的目标 及时的反馈 拉伸区(难度合适) 专注
闻缺陷则喜(喜缺)是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。
子墨子言之:事无终始,无务多业。也就是我们常说的专业的人做专业的事。
如果程序是一条龙,那算法就是他的是睛
失败+反思=成功 成功+反思=成功

视频课程

先学简单的课程,请移步优快云学院,听白银讲师(也就是鄙人)的讲解。
https://edu.youkuaiyun.com/course/detail/38771
如何你想快速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程
https://edu.youkuaiyun.com/lecturer/6176

测试环境

操作系统:win7 开发环境: VS2019 C++17
或者 操作系统:win10 开发环境: VS2022 C++17
如无特殊说明,本算法用**C++**实现。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

软件架构师何志丹

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值