Paper notes-Image Denoising via CNNs: An Adversarial Approach

本文介绍了一种利用卷积神经网络(CNN)进行盲图像去噪的方法。该方法提出了一种新的多尺度自适应CNN架构,能够从噪声图像中提取足够特征并重建清晰图像,其性能与当前最先进的去噪技术相当。实验表明,结合干净和噪声图像进行训练能提高特征映射的质量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Paper notes-Image Denoising via CNNs: An Adversarial Approach

1.Main task

    Is it possible to recover an image  from its noisy version using convolutional neural networks?The paper propose a new CNN architecture for blind image denoising which synergically combines three architecture  compoents,a multi-scale feature extraction layer which helps in reducing the effect of noise feature maps.

    Image denoising is a fundamental image processing problem whose objective is to remove the noise while preserving the original image structure.Traditional denoising algorithms are given some information about the noise,but the problem of blind image denoising involves computing the denoised image from noisy one with out any knowledge of the noise.

    This paper addresses how CNNs can be used for blind image denoising.They are noisy images  and require the network to gather enought features from this images so that a noise-free version can be computed from them.

    1,They propose a multi-scale adaptive  CNN architecture which gives a competitive performance to the state-of-the-art image denoising approaches.

    2,A train regime which exploits clean images as well as noisy images to get good feature maps for recongstruction


2,background

3,Main solution




评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值