Paper notes-Image Restoration Using Very Deep Convolutional Encoder-Decoder Networks with Symmetric

提出了一种使用非常深的卷积编码-解码网络进行图像修复的方法,如降噪和超分辨率。该网络由多个卷积和反卷积层组成,通过跳过层连接对称链接,有助于梯度传递并保留图像细节。

Paper notes-Image Restoration Using Very Deep Convolutional Encoder-Decoder Networks with Symmetric 

1. Main task

    They propose a very deep fully convolution encoding-deconding frame-work for image restoration such as denosing and super-resolution . The network is composed of multiple layers of convolution and de-convolution operators.The convolution layers act as the feature extractor,which capture the abstraction of image contents while eliminating noises.De-convolution layers are then used to recover the image details.They propose to symmetrically link convolutional and de-convolutial layers with skip-layer connections,its training converges much faster and attains a higher-quality local optimum.

    First,the skip connections allow the signal to be back-propagated to bottom layers directly,and tackles the problem of gradient of vanishing,making training deep networks easier and achieving restoration performance gains consequently.Second,these skip connections pass image details from convolution layers to de-convolutional layers,which is beneficial in reconvering the original image.They declare the model can handle different levels of noises using a single model.

2,background

    Recently,deep neural networks have shown their superior performance in image processing and computer vision tasks,They oberve that in order ....

    very deep network architecture,which consists of chain of symmetric convolutional and deconvolutional layers.The convolutional act as the feature extractor which encode the primary components of image contents while eliminating the corruption.The deconvolutional layers then decode the image abstraction to recover the image content details.

    skip connections.......

    can handle different level of noises

    experimental results hava a good work

3,Main solution

    RED-Net is a framework of fully convolutional and deconvolutional.


    The network contains layers of symmetric convolution and deconvolution.Skip shorcuts are connected every a few,in fact,it just use two shorcut to connect the input-output layer and convolution - deconvolution layer.The response from a convolutional layer is directly propagated to the corresponding mirrored deconvolutional layer,both forwardly and backwardly.

    The last output layer is the clean version of the input image,for low-level image restoration problems,they use neither pooling and unpooling in the network as usually pooling discards useful image details that are essential for these tasks.It set kernel size is 3*3 and performance well.The input and output of the network are image of the same shape,They using 64 feature maps for convolutional and deconvolutional layers satisfactory results.They propose two networks,which are 20-layer and 30-layer respectiverly.


4,Training


5,Testing

This can lead to slightly better denoising and super-resolution performance.

6, some of own my ideas

The RED-Net's idea is novel,and performance well.






### Deeplab v3+ 模型实现与代码示例 #### 实现概述 DeepLab v3+ 是 Google 提出的一种先进的图像语义分割模型,它通过引入解码器模块扩展了 DeepLab v3 的功能,能够更好地恢复物体边界并提供更精细的分割效果[^4]。此模型结合了空间金字塔池化(ASPP)、深度可分离卷积以及 Xception 架构,在速度和精度之间取得了良好的平衡。 以下是关于如何使用 TensorFlow 和官方开源代码实现 DeepLab v3+ 的详细介绍: --- #### 官方 GitHub 开源项目 TensorFlow 官方提供了完整的 DeepLab v3+ 训练和推理代码库,位于以下地址: ```plaintext https://github.com/tensorflow/models/tree/master/research/deeplab ``` 可以通过 `train.py` 文件训练 PASCAL VOC 2012 数据集或其他自定义数据集[^2]。具体步骤如下: --- #### 环境准备 确保安装必要的依赖项,包括但不限于 Python、TensorFlow 及其他支持库。可以参考官方文档中的环境配置指南。 --- #### 使用教程 以下是一个简单的入门流程,帮助用户快速上手 DeepLab v3+ 的实现过程。 ##### 1. 下载预训练权重 为了加速收敛,建议从 ImageNet 预训练模型加载初始参数。可以从 TensorFlow Models 存储库下载对应的 checkpoint 文件。 ##### 2. 准备数据集 以 PASCAL VOC 2012 数据集为例,按照官方说明准备好 TFRecord 格式的输入文件[^2]。 ##### 3. 修改配置文件 编辑实验配置文件(通常命名为 `.yaml` 或者直接硬编码到脚本中),指定超参数如批量大小、学习率等。 ##### 4. 启动训练 运行以下命令启动训练进程: ```bash python train.py \ --logtostderr \ --training_number_of_steps=30000 \ --train_split="train" \ --model_variant="xception_65" \ --atrous_rates=6 \ --atrous_rates=12 \ --atrous_rates=18 \ --output_stride=16 \ --decoder_output_stride=4 \ --train_crop_size="513,513" \ --dataset_dir="/path/to/dataset" ``` 以上命令设置了关键参数,例如 Atrous 卷积速率、输出步幅及解码器结构[^4]。 ##### 5. 测试与评估 完成训练后,可通过 `eval.py` 脚本对验证集或测试集进行性能评估,并生成 mIoU 指标。 --- #### 示例代码片段 下面展示了一段核心代码,用于构建 DeepLab v3+ 模型架构: ```python import tensorflow as tf from deeplab.core import feature_extractor def build_deeplab_v3_plus(inputs, output_stride, model_variant): """Builds the DeepLab v3+ model.""" with tf.variable_scope('deeplab_v3_plus'): # Extract features using backbone network (e.g., ResNet or Xception). atrous_rates = [6, 12, 18] outputs_to_num_classes = {'semantic': NUM_CLASSES} # Build encoder. encoder_features = feature_extractor.extract_features( inputs, output_stride=output_stride, multi_grid=None, depth_multiplier=1.0, weight_decay=WEIGHT_DECAY, reuse=tf.AUTO_REUSE, is_training=True, fine_tune_batch_norm=False) # Apply ASPP module and decoder. refined_decoder_features = refine_by_decoder(encoder_features['feature_maps'], atrous_rates=atrous_rates, decoder_output_stride=4) logits = tf.layers.conv2d(refined_decoder_features, filters=NUM_CLASSES, kernel_size=(1, 1)) return logits ``` --- #### 性能表现 DeepLab v3+ 在多个公开基准数据集上表现出色。例如,在 Cityscapes 数据集中,当仅使用精标注训练集时,其 IoU 值达到较高水平;而在加入粗略标注的数据后,进一步提升了整体性能[^3]。 --- #### 注意事项 - 如果硬件资源有限,可以选择较低分辨率的图片尺寸或者减少 batch size 来适应 GPU 显存。 - 对于特定领域应用,可能需要调整网络超参甚至重新设计部分组件以适配实际需求。 ---
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值