31、SensorNet:低功耗教育神经网络框架全解析

SensorNet:低功耗教育神经网络框架全解析

一、SensorNet训练算法

在对SensorNet进行深入研究时,首先要了解其训练算法。以下是训练SensorNet以预测标签(动作)的算法:

Algorithm 5 Train SensorNet to predict labels (actions)
Input: The Network N as defined in Fig. 10.6. An input dataset D of size k (d1..dk) sampled from
various sensors with each point having M attributes.
Output: Predict the class label li for a datapoint di
# Consider the training batch size to be b, the learning rate LR and reshape() changes the shape
of the tensor.
# W is the size of the sliding window.
# epochs is the number of epochs for which the model is trained.
# For categorical crossentropy refer to Eq.10.3
# xtrain is a list of images and ytrain has the expected labels.
for i ← W to D do # After reshape the ten
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值