Agentic AI 和 Agent AI 到底区别在哪里?

引言

人工智能领域近期出现了两个容易混淆的概念:“Agent AI”(通常指人工智能代理)与“Agentic AI”(通常译作能动型人工智能具代理能动性的AI)。随着2022年底大型语言模型(LLM)的突破(如 ChatGPT 的发布)引发了自治代理的热潮,这两个术语的使用频率大增 。尽管二者名称相似,都涉及自主智能体的理念,但在学术定义、体系架构和能力上存在显著差异。本文从学术研究和技术实现层面,对 Agent AI 与 Agentic AI 进行深入比较。我们将分别阐述它们的定义与核心理念、主流文献中的区分、体系结构、决策与学习机制、记忆与规划能力差异,并列举代表性研究成果和实现框架。最后,通过一张对比表格直观总结两者的关键区别。

概念定义与核心理念

Agent AI(人工智能代理) : Agent AI 一般指传统意义上的AI智能体自治代理。早期AI文献将“智能代理”定义为能够自主感知环境、具有一定自主性并采取行动完成特定任务的计算机系统 。典型的AI代理具有感知-决策-执行循环(如 Russell & Norvig 所述的感知-思考-行动架构),可以是软件机器人或物理机器人。在现代背景下,AI Agent 通常指由大型模型驱动、面向狭窄任务自动化的模块化系统。例如,集成LLM的对话代理、通过工具使用和提示工程来增强能力的自动客服机器人等,都是 Agent AI 的范畴。其核心理念是在特定预定义范围内自主完成任务,具有一定的自主决策能力,但通常局限于预先设定的目标或单一步骤任务

Agentic AI(能动型人工智能) : Agentic 一词强调“能动性”或“主动性”。权威定义将 Agentic AI 描述为一种新兴范式,指能够在最少人类干预下自主追求复杂目标的人工智能系统。这类系统具有高度的适应性和高级决策能力,能够在动态、开放的环境中自主设定子目标并完成远程任务。简单来说,Agentic AI不只是一个单一智能体,而是由多个智能体协作组成的自治体系,可以通过自组织来拆解任务、分配子任务并逐步完成复杂目标。其核心理念是一种范式转变:从单一代理转向多代理协同、自主规划和持续学习,体现更高层次的自主性和“能动性”。因此,Agentic AI 更接近于人们设想的自治智能体生态,在较少人工指导下完成以往需要人工分解的复杂流程。

从概念和理念上看,Agent AI 与 Agentic AI 并非完全一致。前者涵盖广义上的AI代理,包括早期专家系统、强化学习代理等;而后者专指近年来兴起的、更高自治级别的多智能体协作系统,是建立在 AI Agent 基础之上的新阶段。简言之,Agentic AI 可以被视为 Agent AI 的拓展和升级——强调多步规划、主动性和协同能力,能够自主应对复杂开放任务。

学术文献中的区分

近年来主流学术界已开始明确区分 Agent AIAgentic AI 的概念。例如,Sapkota 等人(2025)在一篇综述中专门比较了 “AI Agents” 和 “Agentic AI” ,提供了系统的概念分类与应用映射 。该工作指出,传统的 AI Agent 是由LLM等基础模型驱动的模块化系统,专注于狭窄任务的自动化;而 Agentic AI 则是范式上的飞跃,体现为多代理协作、动态任务分解、持久记忆和自主协调等特征。这一区别在学术上日渐清晰,被认为是后-ChatGPT时代 AI 发展的一条主线。另一项权威综述(Acharya 等,2025)也将 Agentic AI 描述为 “自主智能代理”发展的质变,强调其能够在变化环境中自行设定复杂目标并追求之 ;同时区分了传统规则型代理、强化学习代理与 Agentic AI 三者在目标复杂度、自适应性和学习机制等方面的差异。

此外,学术会议和期刊也纷纷探讨 Agentic AI 的独特挑战与机遇。例如,Hughes 等(2025)通过多专家分析讨论了 AI代理与 Agentic 系统的区别和联系,涵盖认知架构和社会影响等

### Agentic AI Agent Planning, Reflection, and Self-Correction Agentic artificial intelligence (AI) agents possess the capability to plan actions towards achieving goals while reflecting on past performance and correcting mistakes. These abilities are fundamental components that enable agentic systems to operate autonomously with a high degree of efficiency. #### Planning Capabilities Planning involves setting objectives and determining sequences of actions required to achieve these goals. Advanced planning algorithms allow agentic AI agents to consider multiple scenarios simultaneously by evaluating potential outcomes before committing resources or executing tasks[^1]. This process often includes: - **Goal Setting**: Defining clear targets based on internal states or external inputs. - **Action Sequencing**: Determining optimal orderings of operations necessary for goal attainment. - **Resource Management**: Allocating available assets efficiently across planned activities. ```python def generate_plan(agent_state, environment_model): """ Generates an action sequence from current state to reach desired objective Parameters: agent_state (dict): Current condition of the agent including location, inventory etc. environment_model (object): Model representing world dynamics Returns: list: Ordered set of actions leading toward target achievement """ # Define goal here... goal = define_goal(environment_model) possible_actions = get_possible_actions(agent_state, environment_model) best_sequence = find_best_action_sequence(possible_actions, goal) return best_sequence ``` #### Reflective Mechanisms Reflection enables agentic entities to analyze previous experiences critically. Through this analysis, insights can be gained regarding what worked well versus areas needing improvement. Techniques such as reinforcement learning facilitate continuous adaptation through trial-and-error processes where rewards/penalties guide future decision-making strategies[^2]. #### Self-Correction Protocols Self-correction refers to mechanisms allowing intelligent agents to identify errors during execution phases promptly. Once detected, corrective measures are initiated automatically without human intervention. Common approaches include anomaly detection models trained specifically for recognizing deviations from expected behavior patterns within specific contexts[^3]. --related questions-- 1. How do modern AI frameworks support dynamic replanning when initial plans fail? 2. What role does machine learning play in enhancing reflective practices among autonomous agents? 3. Can you provide examples demonstrating effective implementations of self-correcting features in real-world applications?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值