Leetcode 455. Assign Cookies

本文介绍了一个经典的LeetCode问题——分配饼干。通过贪心算法解决如何最大化满足孩子的数量,并提供了具体的实现代码。

Leetcode 455. Assign Cookies

source url

题目描述

Assume you are an awesome parent and want to give your children some cookies. But, you should give each child at most one cookie. Each child i has a greed factor gi, which is the minimum size of a cookie that the child will be content with; and each cookie j has a size sj. If sj >= gi, we can assign the cookie j to the child i, and the child i will be content. Your goal is to maximize the number of your content children and output the maximum number.

输入:
输出:排序后的队伍
如:

Input: [1,2,3], [1,1]

Output: 1

Explanation: You have 3 children and 2 cookies. The greed factors of 3 children are 1, 2, 3. 
And even though you have 2 cookies, since their size is both 1, you could only make the child whose greed factor is 1 content.
You need to output 1.

Input: [1,2], [1,2,3]

Output: 2

Explanation: You have 2 children and 3 cookies. The greed factors of 2 children are 1, 2. 
You have 3 cookies and their sizes are big enough to gratify all of the children, 
You need to output 2.

思路

贪心算法:先对输入的两个序列对从小到大排序,随后对饼干进行一次遍历。当当前饼干大小能满足该孩子的需求时,则满足度+1,否则判断下一块饼干的大小。

代码

class Solution {
public:
    int findContentChildren(vector<int>& g, vector<int>& s) {
        int j = 0;
        int ret = 0;

        sort(g.begin(), g.end());
        sort(s.begin(), s.end());

        for(int i =0;i<s.size();i++){
            if(s[i]>=g[j]&&j<g.size()){
                ret++;
                j++;
            }
        }
        return ret;
    }
};
### 贪心算法在 LeetCode 上的应用 贪心算法是一种通过局部最优选择来达到全局最优解的方法。其核心思想是在每一步都做出当前状态下最好的选择,从而希望最终能够得到整体的最优解[^1]。 以下是基于 Python 的几个经典贪心算法题目及其解决方案: --- #### 题目 1: **LeetCode 455. Assign Cookies** 给定两个数组 `g` 和 `s`,分别表示孩子的胃口值和饼干大小。每个孩子最多只能吃一块饼干,求最大满足的孩子数量。 ##### 解法 先对两个数组进行排序,然后从小到大分配饼干给尽可能多的孩子。 ```python def findContentChildren(g, s): g.sort() s.sort() i, j = 0, 0 count = 0 while i < len(g) and j < len(s): if s[j] >= g[i]: count += 1 i += 1 j += 1 return count ``` 此方法利用了贪心策略,在每次循环中优先考虑最小需求的孩子并匹配最合适的饼干[^3]。 --- #### 题目 2: **LeetCode 135. Candy** 有 n 个小孩站在一条直线上,每个小孩有一个评分值。分发糖果的要求是:如果某个小孩的评分高于相邻的小孩,则该小孩获得更多的糖果;至少每人一颗糖果。 ##### 解法 两次遍历数组,一次从前向后,另一次从后向前,确保左右两侧的关系都被满足。 ```python def candy(ratings): n = len(ratings) candies = [1] * n for i in range(1, n): if ratings[i] > ratings[i - 1]: candies[i] = candies[i - 1] + 1 for i in range(n - 2, -1, -1): if ratings[i] > ratings[i + 1]: candies[i] = max(candies[i], candies[i + 1] + 1) return sum(candies) ``` 这种方法通过两轮扫描实现了局部最优条件下的全局最优解。 --- #### 题目 3: **LeetCode 621. Task Scheduler** 给定一组任务字符以及冷却时间 `n`,计算完成所有任务所需的最少单位时间数。 ##### 解法 统计频率最高的任务数目,并根据这些任务之间的间隔安排其他任务。 ```python from collections import Counter def leastInterval(tasks, n): task_counts = list(Counter(tasks).values()) max_freq = max(task_counts) max_count = task_counts.count(max_freq) intervals = (max_freq - 1) * (n + 1) + max_count return max(len(tasks), intervals) ``` 上述代码的关键在于理解如何合理填充高频任务之间的时间间隙。 --- #### 总结 解决贪心类问题时,通常需要明确以下几个方面: - 是否可以通过逐步优化子结构解决问题? - 如何定义“局部最优”,它是否能导向“全局最优”? 此外,清晰表达逻辑流程有助于构建完整的解决方案[^2]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值