pytorch 如何在预训练模型的 input上增减通道

本文介绍如何修改预训练模型的输入层通道数,以适应不同任务需求,包括增加通道、单通道输入等方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

如何把imagenet预训练的模型,输入层的通道数随心所欲的修改,从而来适应自己的任务

#增加一个通道
w = layers[0].weight
layers[0] = nn.Conv2d(4, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)
layers[0].weight = torch.nn.Parameter(torch.cat((w, w[:, :1, :, :]), dim=1))

#方式2
w = layers[0].weight
layers[0] = nn.Conv2d(4, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)
layers[0].weight = torch.nn.Parameter(torch.cat((w, torch.zeros(64, 1, 7, 7)), dim=1))


#单通道输入
layers[0] = nn.Conv2d(1, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)
layers[0].weight = torch.nn.Parameter(w[:, :1, :, :])

 

评论 17
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值