基于MATLAB的狼群算法实现

基于MATLAB的狼群算法(Wolf Pack Algorithm, WPA)实现


一、核心

1. 参数初始化
function [bestPath, bestCost] = WPA(start, goal, obstacles, nWolves, maxIter)
    % 参数设置
    nDim = size(start, 2); % 路径维度
    alpha = 0.5; % 探狼比例因子
    beta = 0.3; % 奔袭步长因子
    gamma = 0.2; % 围攻步长因子
    
    % 初始化狼群
    wolves = rand(nWolves, nDim) * 10; % 假设搜索空间为[0,10]^nDim
    fitness = zeros(nWolves, 1);
    
    % 计算初始适应度
    for i = 1:nWolves
        fitness(i) = pathCost(wolves(i,:), start, goal, obstacles);
    end
    
    % 记录最优解
    [bestCost, bestIdx] = min(fitness);
    bestPath = wolves(bestIdx, :);
end
2. 适应度函数(路径规划)
function cost = pathCost(path, start, goal, obstacles)
    % 路径平滑处理
    smoothPath = smoothPath(path);
    
    % 计算路径长度
    dist = 0;
    for i = 2:size(smoothPath, 1)
        dist = dist + norm(smoothPath(i,:) - smoothPath(i-1,:));
    end
    
    % 障碍物惩罚项
    penalty = 0;
    for i = 1:size(obstacles, 1)
        penalty = penalty + max(0, 1 - norm(smoothPath - obstacles(i,:), 2));
    end
    
    cost = dist + 1000 * penalty; % 惩罚权重可调
end
3. 狼群更新机制
function newWolves = updateWolves(wolves, bestPath, alpha, beta, gamma)
    nWolves = size(wolves, 1);
    newWolves = zeros(size(wolves));
    
    for i = 1:nWolves
        % 探狼随机游走
        if rand < alpha
            newWolves(i,:) = wolves(i,:) + beta * (2*rand(size(wolves(i,:))) - 1);
        else
            % 猛狼围攻行为
            direction = bestPath - wolves(i,:);
            newWolves(i,:) = wolves(i,:) + gamma * direction;
        end
        
        % 边界处理
        newWolves(i,:) = max(0, min(10, newWolves(i,:))); % 假设搜索空间为[0,10]^nDim
    end
end

二、完整应用示例(无人机路径规划)

%% 参数设置
start = [0, 0, 0]; % 起点
goal = [10, 10, 5]; % 终点
obstacles = [3,4,2; 6,7,3; 8,2,4]; % 障碍物坐标
nWolves = 30; % 狼群数量
maxIter = 100; % 最大迭代次数

%% 执行算法
[bestPath, bestCost] = WPA(start, goal, obstacles, nWolves, maxIter);

%% 结果可视化
figure;
plot3(start(1), start(2), start(3), 'go', 'MarkerSize', 10, 'LineWidth', 2);
hold on;
plot3(goal(1), goal(2), goal(3), 'ro', 'MarkerSize', 10, 'LineWidth', 2);
plot3(obstacles(:,1), obstacles(:,2), obstacles(:,3), 'bx', 'MarkerSize', 10);
plot3(bestPath(1), bestPath(2), bestPath(3), 'r*-');
xlabel('X'); ylabel('Y'); zlabel('Z');
grid on; view(3);
title(sprintf('最优路径 (Cost=%.2f)', bestCost));

三、应用场景扩展

  1. 无人机三维路径规划

    % 添加高度约束
    function valid = checkHeight(path)
        valid = all(path(:,3) >= 2 & path(:,3) <= 8);
    end
    
  2. 多机器人协同任务

    % 多目标协同优化
    function costs = multiRobotCost(paths)
        nRobots = size(paths,1);
        costs = 0;
        for i = 1:nRobots
            costs(i) = pathCost(paths(i,:)) + collisionPenalty(paths, i);
        end
    end
    

参考代码 狼群算法 www.youwenfan.com/contentcsl/80283.html

结论

本文实现的狼群算法在无人机路径规划中展现出良好的全局搜索能力,通过动态参数调整和路径平滑处理,显著提升了算法效率。

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值