一、算法原理与数学模型
1. PSO阈值分割框架
分割目标:minτf(τ)=类间方差 或 信息熵\text{分割目标}:\min_{\tau} f(\tau) = \text{类间方差} \ \text{或} \ \text{信息熵}分割目标:minτf(τ)=类间方差 或 信息熵
- 粒子表示:每个粒子位置xix_ixi对应候选阈值τ\tauτ
- 速度更新:
vi(k+1)=w⋅vi(k)+c1r1(pbesti−xi(k))+c2r2(gbest−xi(k))v_{i}^{(k+1)} = w \cdot v_{i}^{(k)} + c_1 r_1 (pbest_i - x_i^{(k)}) + c_2 r_2 (gbest - x_i^{(k)})vi(k+1)=w⋅vi(k)+c1r1(pbesti−xi(k))+c2r2(gbest−xi(k)) - 位置更新:
xi(k+1)=xi(k)+vi(k+1)x_{i}^{(k+1)} = x_i^{(k)} + v_{i}^{(k+1)}xi(k+1)=xi(k)+vi(k+1)
(www:惯性权重,c1,c2c_1,c_2c1,c2:加速因子,r1,r2r_1,r_2r1,r2:[0,1]随机数)
2. 适应度函数设计
(1) Otsu准则(类间方差最大化)
f(τ)=ω0(τ)ω1(τ)(μ0(τ)−μ1(τ))2f(\tau) = \omega_0(\tau)\omega_1(\tau)(\mu_0(\tau)-\mu_1(\tau))^2f(τ)=ω0(τ)ω1(τ)(μ0(τ)−μ1(τ))2
其中ω0,ω1\omega_0,\omega_1ω0,ω1为两类的概率,μ0,μ1\mu_0,\mu_1μ0,μ1为均值
(2) 熵准则(信息最大化)
f(τ)=HL+HR=−∑i=0τpilogpi−∑i=τ+1L−1pilogpif(\tau) = H_L + H_R = -\sum_{i=0}^\tau p_i \log p_i - \sum_{i=\tau+1}^{L-1} p_i \log p_if(τ)=HL+HR=−∑i=0τpilogpi−∑i=τ+1L−1pilogpi
(HL,HRH_L,H_RHL,HR为左右区域熵,pip_ipi为灰度级概率)
二、算法实现流程
1. 初始化阶段
% 参数设置
n_particles = 30; % 粒子数量
max_iter = 100; % 最大迭代次数
w = 0.729; % 惯性权重
c1 = 1.494; c2 = 1.494;% 加速因子
% 粒子初始化(阈值范围[0,255])
particles = randi([0,255],n_particles,1);
velocities = 0.1*randn(n_particles,1);
pbest = particles; % 个体最优
gbest = particles(1);// 全局最优
2. 迭代优化过程
for iter = 1:max_iter
% 计算适应度
for i = 1:n_particles
tau = particles(i);
fitness(i) = otsu_fitness(I,tau); % 调用适应度函数
end
% 更新个体最优
update_idx = fitness > prev_fitness;
pbest(update_idx) = particles(update_idx);
% 更新全局最优
[best_fitness, best_idx] = max(fitness);
if best_fitness > gbest_fitness
gbest = particles(best_idx);
gbest_fitness = best_fitness;
end
% 速度与位置更新
velocities = w*velocities + ...
c1*rand(n_particles,1).*(pbest - particles) + ...
c2*rand(n_particles,1).*(gbest - particles);
particles = particles + velocities;
% 边界处理
particles = max(0,min(255,particles));
end
3. 关键函数实现
function fitness = otsu_fitness(I,tau)
% 计算类间方差
[counts,~] = imhist(I);
total = sum(counts);
w0 = sum(counts(1:tau+1))/total;
w1 = sum(counts(tau+2:end))/total;
mu0 = sum((0:tau)' .* counts(1:tau+1)) / (w0*total);
mu1 = sum((tau+1:255)' .* counts(tau+2:end)) / (w1*total);
fitness = w0*w1*(mu0 - mu1)^2;
end
三、算法优化策略
1. 自适应参数调整
- 动态惯性权重:
w=wmax−itermax_iter(wmax−wmin)w = w_{max} - \frac{iter}{max\_iter}(w_{max}-w_{min})w=wmax−max_iteriter(wmax−wmin)
(初始wmax=0.9w_{max}=0.9wmax=0.9, wmin=0.4w_{min}=0.4wmin=0.4) - 加速因子调整:
c1=c1_init⋅e−λiterc_1 = c_{1\_init} \cdot e^{-\lambda iter}c1=c1_init⋅e−λiter
(λ=0.05\lambda=0.05λ=0.05控制收敛速度)
2. 混合优化策略
-
K-Means+PSO初始化:
% K-Means预分割 [idx,centers] = kmeans(im2double(I),3); % PSO初始化粒子 particles = centers(:,1)*255; -
遗传算法交叉:引入SBX交叉算子增强多样性
function child = sbx_crossover(parent1,parent2,pc) if rand < pc eta = 2; % 分布指数 u = rand(size(parent1)); beta = (2*u).^(1/(eta+1)); child = 0.5*((1+beta).*parent1 + (1-beta).*parent2); else child = parent1; end end
3. 并行计算加速
% 使用parfor并行计算适应度
parfor i = 1:n_particles
fitness(i) = otsu_fitness(I,particles(i));
end
六、Matlab代码
1. 完整代码框架
function [threshold,seg] = pso_threshold_segmentation(I)
% 参数设置
n_particles = 30;
max_iter = 100;
w = 0.7; c1=1.5; c2=1.5;
% 初始化粒子群
particles = 255*rand(n_particles,1);
velocities = 0.1*randn(n_particles,1);
pbest = particles;
[gbest,gbest_fitness] = update_global_best(I,particles);
% 迭代优化
for iter = 1:max_iter
% 更新速度位置
velocities = w*velocities + ...
c1*rand(n_particles,1).*(pbest - particles) + ...
c2*rand(n_particles,1).*(gbest - particles);
particles = particles + velocities;
particles = max(0,min(255,particles));
% 更新最优解
[current_best,fitness] = update_global_best(I,particles);
if fitness > gbest_fitness
gbest = current_best;
gbest_fitness = fitness;
end
% 显示进度
fprintf('Iter %d: Best Fitness=%.4f\n',iter,gbest_fitness);
end
% 输出结果
threshold = gbest;
seg = I > threshold;
end
function [best,fitness] = update_global_best(I,particles)
n = numel(particles);
fitness = zeros(n,1);
for i=1:n
fitness(i) = otsu_fitness(I,particles(i));
end
[best_fitness, idx] = max(fitness);
best = particles(idx);
end
八、参考
刘桂红等. 改进PSO的Otsu图像分割方法. 计算机科学,2016
徐小慧等. 基于PSO的最佳熵阈值分割. 计算机工程与应用,2006
代码 基于粒子群算法的图像分割算法代码源程序 youwenfan.com/contentcsl/52366.html
上述方法,可有效解决传统阈值分割方法依赖人工参数、对复杂图像适应性差等问题。实际应用中需根据图像特性调整PSO参数,并配合形态学后处理提升分割质量。
229

被折叠的 条评论
为什么被折叠?



