
来源 | Towards Data Science 整理 | 磐石
就在几天前,Google AI在Kaggle上推出了一项名为Open Images Challenge的大规模目标检测竞赛。当今计算机视觉社区已经很长一段时间没有进行如此新的大规模竞赛,这对视觉研究者来说绝对是一个令人振奋的消息。
连续多年ImageNet一直是计算机视觉领域的“黄金标准型”竞赛,并且吸引了大量团队每年都参与竞争,以获得在ImageNet数据集上最低的错误率。同时,深度学习技术的突破更是使得图像识别任务取得了令人瞩目的巨大进步,甚至超过了人类的准确度。
ImageNet是一个大规模的视觉识别竞赛,有着1000个不同的类别和120万张训练图像。如此大规模的数据使ImageNet变得非常具有挑战性。通过这个比赛,除了学习到如何很好地分类图像之外,还得到了很重要的一点就是我们得到了可以用于其他视觉任务的特征提取器。在ImageNet上预训练的特征提取网络被运用到了许多其他计算机视觉任务,包括目标检测、分割和跟踪等等。此外,这些特征提取网络的设计同样也可以适用在那些其他的视觉任务上。例如,shortcut connections(跳连)最初就是来自2015年获奖的ImageNet挑战团队,并且现在已经被用于解决计算机视觉任务的大量卷积神经网络结构中。这是一件很有意义的事,大家在一个挑战赛中设计的网络可以被应用到更复杂的任务上。
<